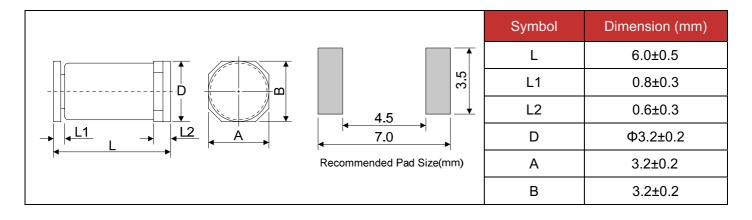
Spark Gap (SPG) Data Sheet

Features

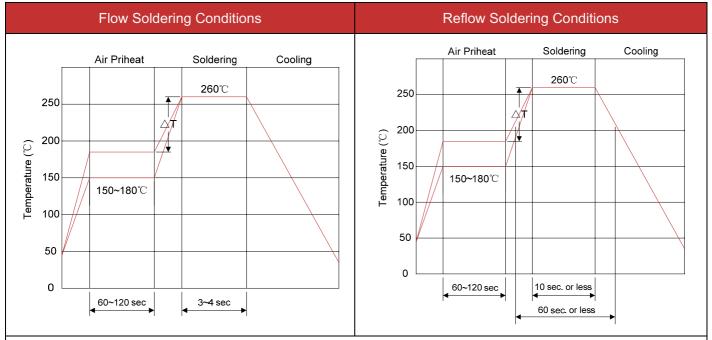

- Approximately zero leaking current before clamping voltage
- Less decay at on/off state.
- High capability to withstand repeated lightning strikes.
- Low electrode capacitance(≤0.8pF) and high isolation(≥100MΩ).
- RoHS compliant.
- Bilateral symmetrical.
- Temperature, humidity and lightness insensitive.
- Square electrode and no rolling
- Operating temperature: -40°C ~ +85°C
- Storage temperature: -40°C ~ +125°C
- Meets MSL level 1, per J-STD-020
- Safety certification: UL: E244458

Applications

- Power Supplies
- Motor sparks eliminating
- Relay switching spark absorbing
- Data line pulse guarding
- Electronic devices requiring UL497A and UL497B compliant
- Telephone/Fax/Modem
- High frequency signal transmitters/receivers
- Satellite antenna
- Radio amplifiers
- Alarm systems
- Cathode ray tubes in Monitors/TVs

Dimensions

Electrical Characteristics


Part Number ①	Type ②	DC Spark-over Voltage	Minimum Insulation Resistance		Maximum Capacitance (1KHz-6V _{MAX})	Surge current capacity
		Vs(V)	Test Voltage(V)	$IR_{OHM}(M\Omega)$	C(pf)	(8/20µs)
BK1XX00702-M	S	140	50	100	0.8	3000A
BK1XX01002-M	S	200	100	100	0.8	3000A
BK1XX01502-M	S	300	100	100	0.8	3000A
BK1XX02002-M	S	400	250	100	0.8	3000A
BK1XX02502-M	S	500	250	100	0.8	3000A
BK1XX03502-M	S	700	250	100	0.8	3000A
BK1XX05002-M	S	1000	500	100	0.8	3000A

Note: ① Vs±XX% ② Specific code by request.

Test Methods and Results

Items	Test Method	Standard	
DC Spark-over Voltage	Measure starting discharge voltage (Vs) by gradually increasing applied DC voltage. Test current is 0.5mA max. And the DC voltage ascends up within 100V/s(Vs<1000V) or 500V/s(Vs≥1000V).	Meet specified value.	
Insulation Resistance	Measure the insulation resistance across the terminal at regular voltage. But the test voltage doesn't over the DC spark-over voltage.		
Capacitance	Measure the electrostatic capacitance by applying a voltage of less than 6V (at 1KHz) between terminals.		
Static Life	10KV with 1500pf condenser is discharged through 0Ω resistor. 200 times at an interval of 10sec.	Rate-of-change, within $\pm 30\%$ insulation resistance & capacitance, conformed to rated spec.	
Surge Current Capacity	1.2/50μs & 8/20μs, 3000A, electrically connected with a resistor (2~4Ω), ±5 times, each time interval 60 seconds. Thereafter, outer appearance shall be visually examined.	No crack and no failures	
Cold Resistance	Measurement after -40°C/1000 HRS & normal temperature/2 HRS.	Features are conformed to rated spec.	
Heat Resistance	Measurement after 125℃/1000 HRS & normal temperature/2 HRS.		
Humidity Resistance	Measurement after humidity 90~95℃(45℃) /1000 HRS & normal temperature/2 HRS.		
Temperature Cycle	10 times repetition of cycle -40 ℃/30min → normal, temp/2 min →125 ℃/30min, measurement after normal temp/2 HRS.		
Solder Ability	Apply flux and immerse in molten solder $230\pm5^{\circ}$ C for 3sec up to the point of 1.5mm from body. Check for solder adhesion.	Lead wire is evenly covered by solder.	
Solder Heat	Measurement after lead wire is dipped up to the point of 1.5mm from body into $260\pm5^{\circ}\mathrm{C}$ solder for 10sec.	Conformed to rated spec.	

Recommended Soldering Conditions

- 1) Time shown in the above figures is measured from the point when chip surface reaches temperature.
- 2) Temperature difference in high temperature part should be within 110°C.
- 3) After soldering, do not force cool, allow the parts to cool gradually.

Hand Soldering

Solder iron temperature: $350\pm5^{\circ}$ C Heating time: 3 seconds max.

General attention to soldering

- High soldering temperatures and long soldering times can cause leaching of the termination, decrease in adherence strength, and the change of characteristic may occur.
- For soldering, please refer to the soldering curves above. However, please keep exposures to temperatures exceeding 200℃ to fewer than 50 seconds.
- Please use a mild flux (containing less than 0.2wt% CI). Also, if the flux is water soluble, be sure to wash thoroughly to remove any residue from the underside of components that could affect resistance.

Cleaning

When using ultrasonic cleaning, the board may resonate if the output power is too high. Since this vibration can cause cracking or a decrease in the adherence of the termination, we recommend that you use the conditions below.

Frequency: 40kHz max. Output power: 20W/liter

Cleaning time: 5 minutes max.

Packaging

Tape	Symbol	Dimension (mm)
	W	16.00±0.20
	P0	4.00±0.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P1	8.00±0.10
	P2	2.00±0.10
BO BO	D0	Ф1.5±0.10
A A B→ KO	E	1.75±0.10
SECTION B-B	F	7.50±0.05
→ A0 ← SECTION A-A	A0	3.50±0.10
	В0	6.50±0.10
	K0	3.50±0.10
	Т	0.50Max.
Reel	D	330.0
	d	13.0
	L	20.0
D L	Quantity: 2000	PCS