

N-Channel MOSFET MEM2318M6

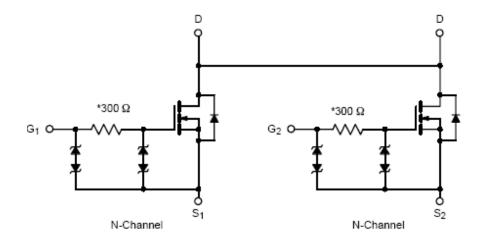
General Description

MEM2318M6 Series Dual N-channel enhancement mode field-effect transistor ,produced with high cell density DMOS trench technology, which is especially used to minimize on-state resistance. This device particularly suits low voltage applications, and low power dissipation.

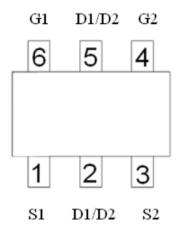
Features

• 20V/6A

 $R_{DS(ON)} = 16m\Omega \otimes V_{GS} = 4V, I_D = 5A$


 $R_{DS(ON)} = 19m\Omega O V_{GS} = 3V, I_D = 4.6A$

RDS(ON) =21mΩ@VGS=2.5V,ID=4.3A


- High Density Cell Design For Ultra Low On-Resistance
- Surface mount package: SOT23-6L
- ESD Protected: 3000 V

Typical Application

- Battery management
- power management
- Portable equipment
- Low power DC to DC converter.
- Load switch
- LCD adapter

Pin Configuration

Absolute Maximum Ratings

Pa	Symbol	Ratings	Unit		
Drain-S	ource Voltage	V _{DSS}	V		
Gate-S	ource Voltage	V _{GSS}	V _{GSS} ±12		
Drain Current	TA=25 ℃		6	٨	
Drain Current	TA=70 ℃	I _D	3.4	A	
Total Dower Dissinction	TA=25 ℃	Dd	2	14/	
Total Power Dissipation	TA=70 ℃	Pd	0.64	W	
Pulsed Drain Curr	IDM	30	А		
Operating T	T _{Opr}	150	°C		
Storage Temperature Range		T _{stg}	-65/150	°C	

Thermal Characteristics

Parameter	Symbol	TYP.	MAX.	Unit	
Thermal Desistance, Junction to Ambient	t≤10s		72	83	°C/W
Thermal Resistance, Junction-to-Ambient	Steady-State	RθJA	100	120	

Electrical Characteristics

MEM2318M6

Parameter	Symbol	Test Condition Min		Туре	Max	Unit
		Static Characteristics		·		
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =250uA 20 2				V
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 250 uA$	0.5	0.73	1	V
Gate-Body Leakage	I _{GSS}	V _{DS} =0V, V _{GS} =12V		4.96	10	uA
		$V_{DS}=0V$, $V_{GS}=-12V$		-5.22	-10	uA
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =16V V _{GS} =0V	V _{DS} =16V V _{GS} =0V		1000	nA
Static Drain-Source	R _{DS(ON)}	V _{GS} =4V,I _D =5A		16	26.5	mΩ
		V _{GS} =3V,I _D =4.6A		19	32	mΩ
On-Resistance		V _{GS} =2.5V,I _D =4.3A		21	37	mΩ
Forward Transconductance	g fs	$V_{DS} = 10 \text{ V}, I_{D} = 6 \text{ A}$	6	20		S
Source-drain (diode forward) voltage	V_{SD}	V _{GS} =0V,I _S =1.5A	V _{GS} =0V,I _S =1.5A		1	V
		Dynamic Characteristic	s			
Input Capacitance	Ciss			1120	1500	
Output Capacitance	Coss	$V_{DS} = 8 V,$ $V_{GS} = 0 V,$		480 630	630	pF
Reverse Transfer Capacitance	$\begin{array}{c} \text{Crss} & \text{f} = 1 \text{ MHz} \end{array}$			110	160	Ы

MEM2318

Switching Characteristics							
Turn-On Delay Time	td(on)	V _{DD} = 10 V, RL = 10Ω		25	60		
Rise Time	tr	I _D =1 A,		60	140	ns	
Turn-Off Delay Time	td(off)	$V_{GEN} = 4.5 V,$		60	140		
Fall-Time	tf	Rg = 6 Ω		50	60		
Total Gate Charge	Qg	$V_{DS} = 10 V,$		47	60		
Gate-Source Charge	Qgs	$V_{GS} = 4.5 V,$		6		nc	
Gate-Drain Charge	Qgd	I _D = 6 A		8			

Typical Performance Characteristics

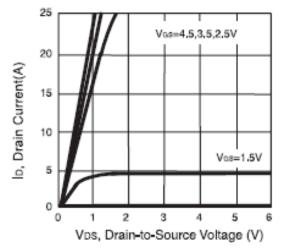
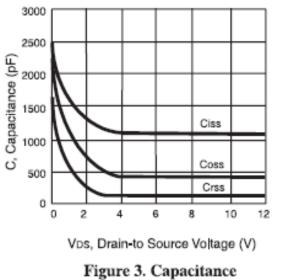



Figure 1. Output Characteristics

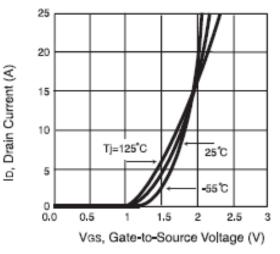
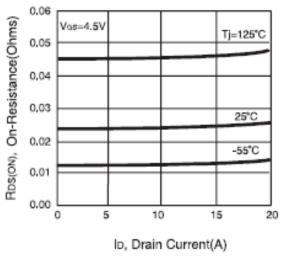
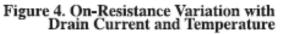
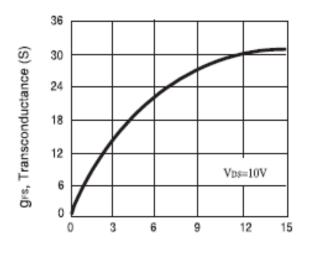
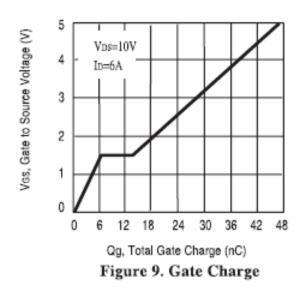
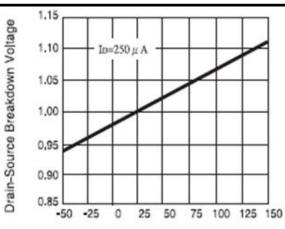





Figure 2. Transfer Characteristics



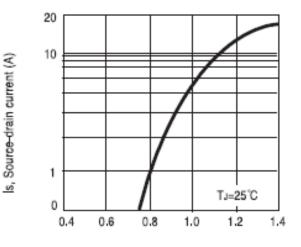
MEM2318


Tj. Junction Temperature (°C)


Figure 5. Gate Threshold Variation with Temperature

lps, Drain-Source Current (A)

Figure 7. Transconductance Variation with Drain Current



BVDSS, Normalized

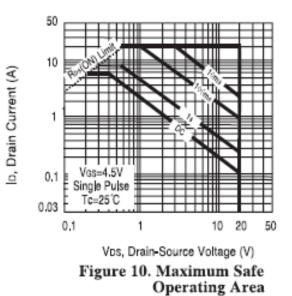
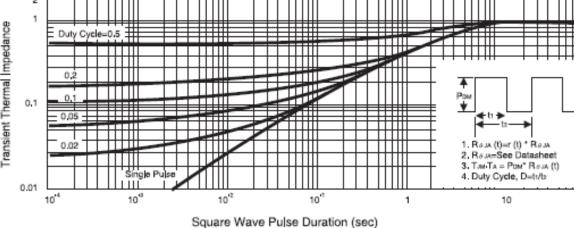


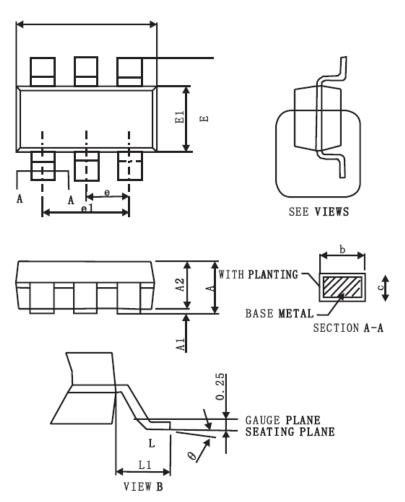
Figure 6. Breakdown Voltage Variation with Temperature

Vsp, Body Diode Forward Voltage (V)

Figure 8. Body Diode Forward Voltage Variation with Source Current

100




Figure 13. Normalized Thermal Transient Impedance Curve

Package Information

SOT23-6L

SOT-23-6

Symbol	А	A1	A2	b	с	D	E
Spec	1.20±0.25	0.10±0.05	1.10±0.2	0.40±0.1	0.15±0.0.7	2.90±0.1	2.80±0.2
Symbol	E11	е	e 1	L	L1	θ	
Spec	1.60±0.1	0.95BSC	1.90BSC	0.55±0.25	0.60REF	4°±4°	

- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.