

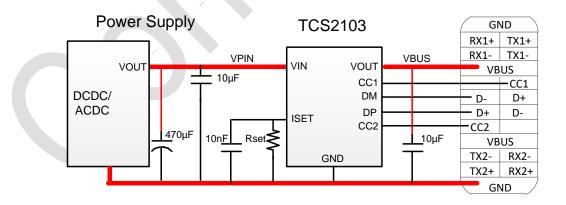
1. Features

- Ultra-low Ron High Side MOSFET
 - 16 mΩ @ 3.6A, 25 °C
- Programmable current limit
- ±7% current limitation at 3A load current
- Operating voltage range: 4.5V to 6.0V
- Build-in soft-start
- Type-C Source (DFP) Role for 5V/3A application
 - 3A capability broadcasting through CC1 and CC2 lines with 330uA current source
 - Auto-discharging VBUS while Sink removed
- · Supports smart detection on D+ and D- lines
 - Battery Charging specification BC1.2 for DCP
 - Chinese Telecommunication industrial stand-ard YD/T 1591-2009
 - D+/D- option for Apple device with 2.4A
 - D+/D- option for Samsung device
- ESD protection on USB ports (VOUT, DP, DM, CC1, CC2)
 - Human Body Model (HBM): >8 kV
- SOT23-8 package

2. Applications

- USB wall Adapters
- · USB car chargers
- Power Banks
- USB Peripherals

3. Description


The TCS2103 is a 16-m Ω current limiting power switch, integrated with the USB Type-C source controller and other proprietary charging methods.

The TCS2103 monitors the Type-C Configuration Channel (CC) lines to determine when an USB device is attached. If a sink device is attached, the TCS2103 applies power to VBUS though the load switch. When the sink device is removed, the switch will be turned off and discharge the VBUS to safe voltage.

Due to integrated auto-detect and auto-switch circuitry, the TCS2103 can apply correct electrical signatures automatically on the USB data lines to charge compliant devices among Apple, Samsung and BC1.2 DCP modes. The Apple 2.4/2.1A modes can also be configured.

The TCS2103 provides accurate and programmable current limitation. When the output voltage is less than 4.0V or when an over temperature protection occurs during an overload condition, the TCS2103 enters hiccup modes.

4. Typical Application Circuit

Strictly Confidential 1 of 10

5. Pinning information

5.1 Pinning

TCS2103(TOP VIEW)

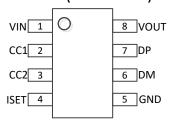


Figure 1 TCS2103 Package

5.2 Pin Description

Symbol	Pin	IP Type	Description
VIN	1	Power	Input of the load switch, decoupling a 10µF low ESR capacitor to ground
CC1	2	I/O	CC1 terminal of Type-C connector
CC2	3	I/O	CC2 terminal of Type-C connector
ISET	4	Output	Connect to current limitation configuration resistor, relation between limited current and Rset: ILIM=1905/Rset
GND	5	Ground	Ground of chip
DM	6	I/O	D- terminal of USB connector, typical 2.7V
DP	7	I/O	D+ terminal of USB connector, typical 2.7V
VOUT	8	Output	Output connecting to VBUS of USB, decoupling a 10µF low ESR capacitor to ground

6. Absolute DC Maximum Ratings

Items	Descriptions		Min.	Max.	Unit
VIN	Supply voltage range	VIN,VOUT	-0.3	6.5	V
V_IO	IO voltage range	DP, DM, ISET	-0.3	5.5	V
IDPDM	PDM While DPDM shorted, source current from DP to DM				
WEOD	Human Body Model	DP, DM, VOUT, CC1, CC2		8	KV
V(ESD)	for chip Others			4	KV
T _{stg}	Storage temperature		-65	150	°C
T _{JMAX} Maximum junction temperature					°C

Strictly Confidential 2 of 10

7. Recommended Operation Conditions

Parameters	Descriptions	Min.	Max.	Unit
VIN	Supply voltage range	4.5	6.0	V
TA	Free air temperature	-40	105	°C

8. Characteristics

t _R	Static on-state resistance Output voltage rising time Current limitation Discharge resistance	Iout=3A, V_{IN} =5V V_{IN} =5V, C_L =10 μ F, R_L =100 Ω R_{SET} =0.68K R_{SET} =0.56K V_{OUT} = 4 V, sink device removed, time < tDCHG	0.1 2.6 3.15	16 0.15 2.8 3.4	0.2	$m\Omega$ ms
t _R	Output voltage rising time Current limitation Discharge resistance	$V_{\text{IN}}\!=\!5\text{V, }C_{\text{L}}\!=\!10\mu\text{F, }R_{\text{L}}\!=\!100\Omega$ $R_{\text{SET}}\!=\!0.68\text{K}$ $R_{\text{SET}}\!=\!0.56\text{K}$ $V_{\text{OUT}}\!=\!4\text{ V, sink device removed,}$	2.6	0.15 2.8		ms
loc	Current limitation Discharge resistance	R _{SET} =0.68K R _{SET} =0.56K Vout = 4 V, sink device removed,	2.6	2.8		
	Discharge resistance	R _{SET} =0.56K Vout = 4 V, sink device removed,			3	Α
	Discharge resistance	Vout = 4 V, sink device removed,	3.15	3.4		
Rosch					3.65	Α
				1		ΚΩ
R _{BLD_DSCH}	Bleeding discharge resistance	V _{IN} =5V		150		kΩ
tосна	RDCHG discharge time	Vout = 1 V, time Isnk_out > 1 mA after sink device removed		100		ms
PROTECTIONS						
Vuvlo	VIN UVLO threshold voltage	V _{IN} rising	3.9	4.1	4.3	V
Vuvlo_HYS	VIN UVLO hysteresis	V _{IN} falling hysteresis		0.2		V
_	Temperature rising threshold for	Not in current limit		150		°C
	over temperature protection	In current limit		130		°C
T _{hys}	Hysteresis temperature	Temperature falling after OT		20		°C
tios	Response time to short circuit	V _{IN} =5V		3		μs
	V _{OUT} voltage threshold while going to hiccup mode	V _{IN} =5V	3.8	4.0	4.2	V
Тніссир_ом	Switch on time of hiccup mode	V _{IN} =5V, while V _{OUT} < V _{OUT} _		6.4		ms
DPDM FUNCTION	ALITY					

Strictly Confidential 3 of 10

Parameters	Descriptions	Test conditions	Min.	Тур.	Max.	Unit
V_{DP_2V7}	DP output voltage	VIN=5V	2.5	2.7	2.9	V
V _{DM_2V7}	DM output voltage	VIN=5V	2.5	2.7	2.9	V
R _{DP_2V7}	DP output resistance	IDP=-5µA	24	30	36	kΩ
R _{DM_2V7}	DM output resistance	IDM=-5µA	24	30	36	kΩ
V_{DP_1V2}	DP output voltage	V _{IN} =5V	1.05	1.2	1.3	V
V _{DM_1V2}	DM output voltage	V _{IN} =5V	1.	1.2	1.3	V
R ₁ V ₂ _GND	DP/DM output resistance	I _{DP} =-5µA	80	105	130	kΩ
Rshort_dpdm	DP and DM short resistance	V _{DP} =0.8V, I _{DM} =1mA		100	150	Ω
Rdcp_gnd	Resistance between DP/DM and GND	V _{DP} =0.8V	550	700	850	kΩ
Vdpl_detach	Voltage on DP while device goes back to divider mode		0.31	0.33	0.35	V
CC FUNCTION	ALITY					
Icc_3A0	Detection current from CC in 3.0A mode		-8%	330	+8%	μΑ
Vrd_3A0	Sink detection threshold voltage in 3.0A mode		0.85		2.45	V
V _{safe0V}	Safe operation voltage at VOUT while a sink is inserted				0.8	V
tccdebounce	Time a port shall wait before it can determine sink is attached and UFP goes to low		100	150	200	ms
SUPPLY CURR	ENT					
I _{VIN_IDLE}	VIN current while no loading on VOUT	V _{IN} =5V		150		μΑ

Strictly Confidential 4 of 10

TYPICAL CHARACTERISTIC DIAGRAM

Figure 2 On-resistance of load switch VS ambient temperature

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100110120 Temperature / $^{\circ}\text{C}$

3.6

3.4

Δ

3.2

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120

Temperature @ VIN=5V, Rset=0.56KΩ

Figure 3 Limitation current of load switch VS ambient temperature

Strictly Confidential 5 of 10

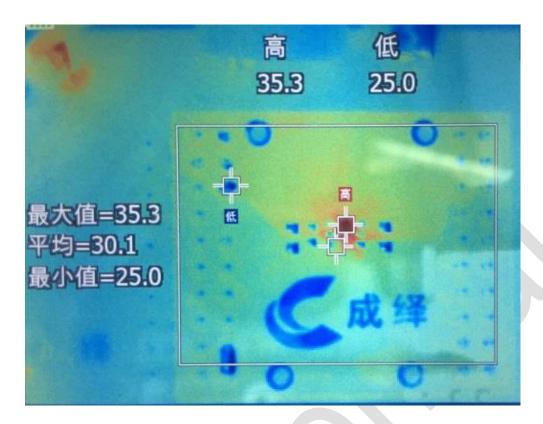


Figure 4 Thermal performance image (ΔT=10°C) while ILOAD=3A @ T_A=25°C

9. Application Notes

9.1 Programming the Current limit Threshold

The user-programmable R_{SET} resistor on the ISET pin sets the current limit threshold of the load switch. The TCS2103 uses an internal regulation loop to sense output current flowing through the switch. The current-limiting threshold is proportional to the current sourced out of the ISET pin, which is also a sensitive node regarding loop stability.

The recommended 1% resistor range for R_{SET} is between 480 Ω and 3800 Ω to ensure loop stability. Equation 1 shows the calculation of current limit threshold:

$$I_{SET} = \frac{1905}{R_{SET}}$$
 ----- Equation 1

The following table shows the recommended resistance:

R _{SET} / Ω	1050	790	680	560	530
I _{SET} /A	1.8	2.4	2.8	3.4	3.6

9.2 Layout Guidelines

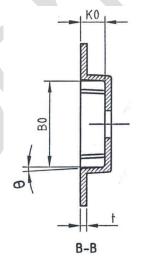
- TCS2103 placement: Place at least 10-µF low ESR capacitor on VOUT pin for filtering. And the capacitor should be placed between TCS2103 and USB receptacle.
- VIN to VOUT current path: Take special care on the critical path from VIN to VOUT (VBUS of USB). The copper for this path should be as wide as possible to reduce the conducting resistance and help dissipating heat of chip.
- I_{SET} pin: Ensure that there is adequate spacing between VIN pin copper/trace and I_{SET} pin trace to prevent contaminant buildup during the PCB assembly process. To reduce parasitic effects on the

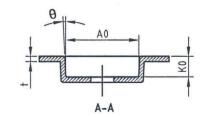
Strictly Confidential 6 of 10

current-limit accuracy, R_{SET} resistor should be placed as close to TCS2103 as possible. The 10nF filtering capacitor should be X5R ceramic placed beside the R_{SET} resistor.

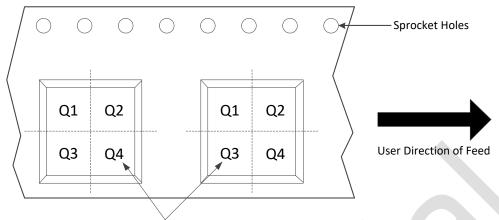
10. Mechanical, Packaging, and Ordering Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document.

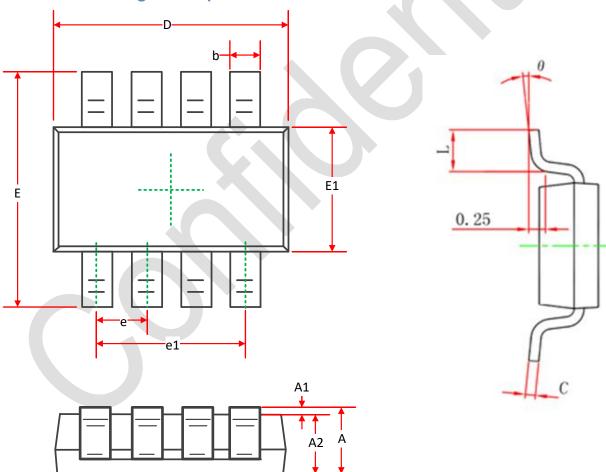

10.1 Ordering Information


Part	Top side		Package					
number	Marking	Name	Description		Version			
TCS2103DDFR	2103	SOT238	SOT23-8L		A			

10.2 Tape and Reel Information


Device	Package	Pins	SPQ	E	F	P2	D	D1	P0	10P0
	Type			(mm)						
TCS2103DDFR	SOT23-8L	8	3000	1.75	3.5	2.0	1.55	1.05	4.0	40.0

Strictly Confidential 7 of 10


QUADRANT ASSIGNMENTS FOR PIN1 ORIENTATION IN TAPE

Pocket Quadrants

Device	W	P	A0	B0	K0	t	θ	Pin1
	(mm)	Quadrant						
TCS2103STAR	8.0	4.0	3.26	3.23	1.05	0.2	5° MAX	Q1

10.3 Package description

Strictly Confidential 8 of 10

Symbol	Dimensions	In Millimeters	Dimensions In Inches					
Symbol	Min	Max	Min	Max				
Α		0.900		0.035				
A1	0.000	0.100	0.000	0.004				
A2	0.700	0.800	0.028	0.031				
b	0.280	0.380	0.011	0.014				
С	0.080	0.200	0.003	0.008				
D	2.820	3.020	0.111	0.119				
E1	1.600	1.700	0.063	0.067				
Е	2.650	2.950	0.103	0.116				
е	0.65(BSC)	0.025(BSC)					
e1	1.95(BSC)	0.075	(BSC)				
L	0.300	0.600	0.012	0.024				
θ	0°	8°	0°	8°				

Strictly Confidential 9 of 10

11. Disclaimer

Information in this document is believed to be accurate and reliable. However, CHENGYI Semiconductors Technology Co. Ltd(CHENGYI Semiconductors) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

CHENGYI Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

CHENGYI Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an CHENGYI Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. CHENGYI Semiconductors accepts no liability for inclusion and/or use of CHENGYI Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. CHENGYI Semiconductors makes no representation or warranty that such applications be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of CHENGYI information in CHENGYI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. CHENGYI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of CHENGYI components or services with statements different from or beyond the parameters stated by CHENGYI for that component or service voids all express and any implied warranties for the associated CHENGYI component or service and is an unfair and deceptive business practice. CHENGYI is not responsible or liable for any such statements.

12. Contact information

For more information, please visit: http://www.chsemi.com

For sales office addresses, please send an email to: sales@chsemi.com

Strictly Confidential 10 of 10