PicoScope® 2000 Series (A API)

PC Oscilloscopes and MSOs

Programmer's Guide

ps2000apg.en r9
Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

Technology

PicoScope 2000 Series (A API) Programmer's Guide I

Contents

I L e (U T PO 1
T OVEIVIEW cocuneeenrreiiieiiiinnnntettiesiisissnnnssensessssssssnsssssssssssssssssssessssssssssssasssssssssssssssasssssssssssssssassssssssssssansane 1
2 PC rEQUIFEIMENTS eeeeeeeeeeeeeeeeeeeeeeeeeeesesesesesssesssane 2
3 Legal informationcccceieieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieieeeeieeeeeieeeieeeeeeeeeeeeeesesesesesesesesesesssssssssssssssssesesssesens 3
A o] el =] o] TR 4
T DFIVEE ceerrueeiiiiienieennnnneiiientetestueeesseestesssssssssssssesssssssssssssseesssssssssssssessansse 4
2 SYStEM FEQUIFEMENTES eeeeeeeeeeeeeeeeeeeeeeeesesesssesssssssesssane 4
3 GENEral ProCeAUIE .cceeeeeeereeeeeeeeeeeeeeeeeeeeeeeeeteeeeeeeeeeeeeeeeeeeseeeeeeeseeeeeeeseseseessssessssssssssssssessssssssssssessssssssssens 4
B 1T L 1 ¥ RN 5
5 MSO digital data ..ccceeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeeeeeeeeteeeeeeereeeeeeereeeseeeseeeesseesessssssssssssssssssssssssssssssessssssssssess 6
6 THIGEIING wevvrrrrrrnnunniernrirrnnuueieresrerrnnesssssessssssssssssssssssssasssassnssssssses 6
7 SAMPIING MOAES «eueeirecnnriieiiniiieinttiecniteeesssteeesssneeesssssesesssssseessssssesssssssasssssssesssssssasssssnsasssssssassssansanes 7
L =100 T 2y o T« 8

2 Rapid BlOCK MOdE .eueeeeeeeeeeeeeeeeeneeeeeeeeeeeeeneeeeeeeeeeeeeeeeeeeesesssess 10

3 ETS (Equivalent Time Sampling)ccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiieieiieieieeeeeeeeeeeeeeeeesesesseesens 15

4 Streaming MOAE ...ccceeieiiinninnnetieneiiissssnenteneesssssssnneeseesssssssssssasssssssssssssasasssssssssssssassssssssssssansans 17

5 Retrieving stored dataceeeeeiiiiinniennnnniiiiinnnieeenneeiiisessiessasess 19

8 THMEDASES eevrerrirrinnnreriieniinsisnntnetiesiisssssnnseeniesssssssnsssenessssssssssssssnsesssssssssssasssssssssssssssssssssssssssssasassssss 20
9 MSO digital connector diagramuiiiiiiiiiiiiiiiisiiisininnsnnisisssasssasans 21
10 Combining several OSCIllOSCOPES ..eeeeeeeeeeneeeeeeeeeeeeeneneeeeeeeeeeeeeeeeeeeeeeeseeemeeesess 21
2 o I VT3 Tt T 3 T 22
1 ps2000aBIOCKREAAY ..cceeeeeeeeeeeeneenneeeenneeeeeeeeeeeeeeeeeeeeeeeeeseseeesesesess 24
2 PS2000aCIOSEUNILueuernunnnnnnnniiiiiisisisisse 25
3 Ps2000aDataReadyccceeeerununeiieneeennnuneiiiceneesssensesseseesesssssssssessssssssssesssssssssssssssesssssssssssssssssssssssssansss 26
4 ps2000aENUMEratEUNILs ...ccccvueeeereeeiinsssinneeeienissssssnnseeneessssssssnssssnsssssssssssssasssssssssssssssssssssssssssssassssssss 27
5 PS2000aFIashLedcccovieeiuunniiiennennnnneniiiieeneennnnnneiicesecresssessssscsseessssssessssssssssssssssssssssesssssssssssssssssssnsse 28
6 ps2000aGetANAlOGUEOSTSELuuuuuuerriiiiiisssssisse 29
7 ps2000aGetChannellNformationeeeeeeeeeieiiinsinnneieeeenisssssnneeeeeesssssssnsseessssssssssssasssssssssssssssssssssses 30
8 ps2000aGetMaxDownSamPpleRatiocceeereenunnniiiicniennnnuniiiieeneentueniiiiesteesssneeisssessessssssessssssessssssssssens 31
9 PS2000aGEtMAXSEGMENLS ...uuuuuererernriss 32
10 ps20002aGEetNOOFCAPLUIES .eeeeeeeeeeeeereeeeeeeeeeeeesesesesssess 33
11 ps20002aGetNOOfProcessedCapturescccceeeeeeneeiceeeeeennueneiisecseessssnsesssssessssssssessssssessssssssssssssssssssses 34
12 ps2000aGetStreaminglatestValUueseeesesessssssssssssssssssssssssssssssssssssss 35
13 ps2000aGetTimeEDase cccceeuuuuueiierieeennunniiiieeniennunnniiiieseetesmueeiisieeseessssssessssssessssssssessssssesssssssssssssssssssnsss 36
14 ps2000aGetTimeDase2ueeeiiiiiiiniinerieiiiiiininnettieeiciissnteeteeesssssssnsssseesssssssssssssssssssssssssssssssssssssens 37
15 ps2000aGetTriggerTimeEOSSEt ..uueuueeesesesesesess 38
16 ps2000aGetTriggerTimeOffsetb4uuuuuuneneneeeeeeeeeeeeeeeeeeeteteeeteeeeeeeeeaeeeeeeeeeaeaaaaeaeaaaeaeaasaaaaasaaasasaaee 39
17 ps2000aGetUNItINFO ...uueeueeeiiiieiiiniinneniiiiiiiinnntetteenecsssssnneeteesssssssssnsssssesssssssssssssssssssssssssssasssssssssens 40
18 PS20002GEtVAlUES .ceesesesssess 41
1 Downsampling Modesccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiieieeeeeieieieieieieeeeeeeeeeeesesesssesesesesssssesen 42

19 PS20002GEtVAIUESASYNC ceeeeeeeeeeeeeeeereeeeeeeeeeeeeeesesess 43

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

Contents

20 ps2000aGetValuesBUlKiiiiiiiiiiiiiiisisisiisiissisisss 44
21 ps2000aGetValuesOVErlappedcccceeiemmuenniiicnieennnnniiiieeteessnenssscsssesssssssssssssssssssssssssssssesssssssssssns 45

1 Using the GetValuesOverlapped fUNCLiONS c..cceeceeeeeenesesseeeens 46
22 ps2000aGetValuesOVerlappedBuUlkueeeeeieeiiniinneeieeeeiiininnnneneeiesisssssnsneeesssssssssnnsssensssssssssssssssnsses 47
23 ps2000aGetValuesTriggerTimeOffsetBulk ..., 48
24 ps2000aGetValuesTriggerTimeOffsetBulké4ueuerenninnniiiiiiiiiiiissiiisisssssssssssssssssssssssssssssssnenens 50
25 pS2000aHOIAOAS ...ceeeeiiiiiiiiirnnreeiieniisissinneeeiesissssssnnsseseesssassssssss 51
26 PS2000aISREAY ...ccereerrnnnneniieneernnnnneiiieerresssnnessesseesssssssssssssssssssssssssssssesss 52
27 ps2000alsTriggerOrPulseWidthQualifierEnabledccocouuureeiiiieiiinnnnneieeicciisnsnnnneeeeccsssssnneseeeees 53
28 ps2000aMaximUMVAlUEeeeueeeeerniiiiiiissssisse 54
29 ps20002aMeEMOIYSEEMENLSuueuerururiiiiiisisssississ 55
30 ps2000aMiNIMUMVAIUE eceeeeeeeeeeeeeeeeneneeeeeeeeeteeeeeteeeeeeeeeseeesesesesssssess 56
31 ps2000aNoOfStreamingValueseeeeeeeeeeeeeeneeeeeeeeeneeeieeeeeeeeeeeeeeeneneeeeeieieieseseieseseses..... 57
32 PS200020PENUNIL ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeesesesesssess 58
33 PS200020PENUNILASYNC ceeeeeeeeeeereeeeereeeresesesesesess 59
34 ps2000a0PenUNitProgresseeeeeeeeeeeeeeeeeeeeeueeeneieneeeeeieeeeeeeneieeeieieieseese.—.—.—. 60
35 PS2000aPiNGUNIt eesesesesssess 61
36 PS2000aRUNBIOCK .cceeeeeeeeeeeeeeneneneeeeeneeeeeeeeeeeeeeeeeeeeeeeeeeeseeesesesesess 62
37 ps2000aRUNSLrEAMING ..uueeeeeeeiieiiinrrnnereeieeiiisnisnneteeeecsssssssnseseeeecsssssssssasseesssssssssssssssessssssssassasesesssssans 64
38 PS2000aSEtChannel ..eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesesess 66
39 ps2000aSetDataBuUfferccccceeeeeennueniiiieereennnnnniiceseetessaeesssecseessssssessssssessssssssessssssssssssssssssssssssssnsse 67
40 ps2000aSetDataBuUffersccccoeveiiiiiiisiiisisiiiisisse 68
41 ps2000aSetDigital AnalogTriggerOpPerandcccccocivieiisiisisss 69
42 ps2000aSetDigitalPort ... s s eee 70
43 PS2000ASELELSueeereerreriiirsrsnnreeeiensssssssnseensesssssssnsssessesssassassssssssssssasassssss 71
44 ps2000aSetEtsSTIMEBUSTEruueeiiiiiiininneiiiiiiniinnnneeteeeeiiininieetteeesisssssnnssseeessssssssssassessssssssssssasssssses 72
45 ps2000aSetEtsTIMEBUSFErs ...cccceuuuuueiiiieriennunniiiiicnnennnnnniiiieeteessnensisiccstesssssssssssessesssssssssssssessssssssssens 73
46 ps2000aSetNOOFCAPLUIES ...uueeeeerreeiisssrssnneeriesissssssnnsseeeessssssssssasssesssssssssssssssssssssssssassssssssssssssssssssssss 74
47 ps2000aSetPulseWidthDigitalPortPropertiesccccovviciiiiiniiiniiininsiiiiiininisinnnsisnsnsssssssssssscssssssenens 75
48 ps2000aSetPulseWidthQUAIIfIErccccvviviiiiiiiiiiiiiiiiiisiiiiiisisiisisissssissens 76

1 PS2000A_PWQ_CONDITIONS StrUCLUIE ..ccccevreescerseescesssessersssescesssessasssesssssssessesssssssssssssssssse 78
49 ps2000aSetSigGENAIDItraryccccciiiiiiiiiiiiiiiiininisinsninsnnsisssiessssssssssssssssssss s sssssssssssssssssssssssssssasans 79

T AWG iNdEX MOAES ..ceuruuunnreriieeieisssssnnentenessssssssnnesteesssssssssssssssesssssssssssssssssssssssssssasssssssssossansans 81

2 Calculating deltaPhaseeeeseeesesesssesssssssssssssssssssssssssssssssssssssssess 82
50 ps2000aSetSigGenBuiltlneeeeeeeeeeeeeeeeeeeeeeeeeneeeeeeeneeeeeeeeeeeeeeeeeeemeeeeeeeseeesess 83
51 ps2000SetSigGenBuiltinV2 ...ttt aaaa 85
52 ps2000aSetSigGenPropertieSAIDItraryeeseeesesessssssssssssssssssssssssssssssssssssss 86
53 ps2000aSetSigGenPropertiesBuiltinueeeeeeeeeeeeeeeeeeeeeeee e 87
54 ps2000aSetSimpPleTIiGEEr weeueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesess 88
55 ps2000aSetTriggerChannelConditionseesesssessssssssssssssssssssssssssssssss 89

1 PS2000A_TRIGGER_CONDITIONS StruUCtUFe ...cccceeecesssssnneeeeescsssssssssaeesessssssssssssessssssssssssssans 90
56 ps2000aSetTriggerChannelDIrectionseeseeesesessssssssssssssssssssssssssssssssssssss 91
57 ps2000aSetTriggerChannelProperties ... iuuueeieeicciissisneeteeescssssssnneensessssssssnssssesssssssssssssssssssssssens 92

1 PS2000A_TRIGGER_CHANNEL_PROPERTIES Structurecccecoessnsnnneeeeeccsssssnnneeceescsssssssnsens 93

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide i

58 ps2000aSetTriggerDelayeemesesesesess 95

59 ps2000aSetTriggerDigitalPOrtPropertiesueueeeeeeeeeeeeeeeeeneeeeeeeeeeeeeeeeeeeeeeeeeeeeeneneeaeeaeeaeeaaaeaea... 96

1 PS2000A_DIGITAL_CHANNEL_DIRECTIONS Structureccoeeeessnnneeeeresscssssnnneeeeesssssssnnnsens 97

60 ps2000aSigGenArbitraryMinMaxValuesccccevveiiiisiiiiisisiiiiisiss 98

61 ps2000aSigGenFrequencyTOPhAse ... sesssasens 99

62 ps2000aSigGenSoftwareCoNtrolccccciciiiiiiiiisissse 100

63 PS2000aSLOP «eceriririrrersrssssesse 101

64 ps2000aStreamingReadycccccicieiiiiiiiiiiiiiiiiiiiiiiiiiiinininnnnnnnnnnnnnnsssssss s s s aee 102

65 WIrapper fUNCLIONS ...cciiiiiiiiiiiiininisissse 103

4 Further information ...ttt 105
1 Programming @XamPIES e.....ceeereeennneniienniereanneesiessseeranassssssssssessses 105

2 DIiIVEr StAtus COAES ..uuuurerrrieriisissinneennesissssssnnsenesesssssssssassensssssssssssasasssssssssssssasasssssssssssssassssssssssssansans 105

3 Enumerated types and CONSLANLES ce.ueeeeeieereeereenneiceceeeesssessssecssesss 105

4 NUMEYIC data tYPES ceeeeeeeerierrrrrrennneiiiensierraneessissssseessasssassssssssssssssssssssssosss 105

T 1 o T TN 106
INAEX 1ttt a s a s a e s aa e aas 109

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

Technology

PicoScope 2000 Series (A API) Programmer's Guide

1 Introduction

1.1 Overview

The PicoScope 2000 Series PC Oscilloscopes from Pico Technology are high-speed
real-time measuring instruments. They obtain their power from the USB port, so they
do not need an additional power supply. With an arbitrary waveform generator these
scopes contain everything you need in a convenient, portable unit.

This manual explains how to develop your own programs for collecting and analyzing
data from the PicoScope 2000 Series oscilloscopes. It applies to all devices supported
by the 'ps2000a' application programming interface (API), as listed below:

2-channel

2-channel MSO

4-channel

PicoScope 2206
PicoScope 2206A
PicoScope 2206B
PicoScope 2207
PicoScope 2207A
PicoScope 2207B
PicoScope 2208
PicoScope 2208A
PicoScope 2208B

PicoScope 2205A MSO
PicoScope 2206B MSO
PicoScope 2207B MSO
PicoScope 2208B MSO

PicoScope
2205 MSO

PicoScope 2405A
PicoScope 2406B
PicoScope 2407B
PicoScope 2408B

The Pico Software Development Kit (SDK) is available free of charge from
www.picotech.com/downloads. This download includes support for all PicoScope

oscilloscopes including the ps2000a API described in this manual, as well as the
original ps2000 API for older oscilloscopes in the PicoScope 2000 Series.

SDK version: 10.6.11

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

ps2000apg.en r9

https://www.picotech.com/downloads

Introduction

1.2

PC requirements

To ensure that your PicoScope 2000 Series PC Oscilloscope operates correctly with
the SDK, you must have a computer with at least the minimum system requirements
to run one of the supported operating systems, as shown in the following table. The
performance of the oscilloscope will be better with a more powerful PC, and will benefit
from a multi-core processor.

Item Specification

Operating Windows XP (SP3) or later (not Windows RT)
system 32-bit and 64-bit

Processor

Memory As required by Windows

Free disk space

USB 2.0 or USB 3.0 port
USB 1.1 port (absolute minimum)

Ports*

* PicoScope oscilloscopes will operate slowly on a USB 1.1 port. Not recommended.
USB 3.0 connections will run at about the same speed as USB 2.0.

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 3

1.3

Legal information

The material contained in this release is licensed, not sold. Pico Technology Limited
grants a licence to the person who installs this software, subject to the conditions
listed below.

Access. The licensee agrees to allow access to this software only to persons who have
been informed of these conditions and agree to abide by them.

Usage. The software in this release is for use only with Pico products or with data
collected using Pico products.

Copyright. Pico Technology Ltd. claims the copyright of, and retains the rights to, all
material (software, documents, etc.) contained in this SDK except the example
programs. You may copy and distribute the SDK without restriction, as long as you do
not remove any Pico Technology copyright statements. The example programs in the
SDK may be modified, copied and distributed for the purpose of developing programs
to collect data using Pico products.

Liability. Pico Technology and its agents shall not be liable for any loss, damage or
injury, howsoever caused, related to the use of Pico Technology equipment or
software, unless excluded by statute.

Fitness for purpose. As no two applications are the same, Pico Technology cannot
guarantee that its equipment or software is suitable for a given application. It is your
responsibility, therefore, to ensure that the product is suitable for your application.

Mission-critical applications. This software is intended for use on a computer that
may be running other software products. For this reason, one of the conditions of the
licence is that it excludes use in mission-critical applications, for example life support
systems.

Viruses. This software was continuously monitored for viruses during production, but
you are responsible for virus-checking the software once it is installed.

Support. If you are dissatisfied with the performance of this software, please contact

our technical support staff, who will try to fix the problem within a reasonable time. If
you are still dissatisfied, please return the product and software to your supplier within
14 days of purchase for a full refund.

Upgrades. We provide upgrades, free of charge, from our web site at
www.picotech.com. We reserve the right to charge for updates or replacements sent
out on physical media.

Trademarks. Windows is a trademark or registered trademark of Microsoft
Corporation. Pico Technology Limited and PicoScope are internationally registered
trademarks.

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

4 Concepts

2 Concepts

2.1 Driver
Your application will communicate with a PicoScope 2000 (A API) driver called
ps2000a. dl | , which is supplied in 32-bit and 64-bit versions. The driver exports the
ps2000a function definitions in standard C format, but this does not limit you to
programming in C. You can use the API with any programming language that supports
standard C calls.
The API driver depends on another DLL, pi coi pp. dl | (which is supplied in 32-bit and
64-bit versions) and a low-level driver called W nUsb. sys. These are installed by the
SDK and configured when you plug the oscilloscope into each USB port for the first
time. Your application does not call these drivers directly.

2.2 System requirements
General requirements
See PC requirements.
USB
The ps2000a driver offers four different sampling modes (methods of recording data)
all of which support USB 1.1, USB 2.0 and USB 3.0. The fastest transfer rates are
achieved using USB 2.0 or USB 3.0.
Note: USB 3.0 connections will run at about the same speed as USB 2.0.

2.3 General procedure

A typical program for capturing data consists of the following steps:

Open the scope unit.

Set up the input channels with the required voltage ranges and coupling type.
Set up triggering.

Start capturing data. (See Sampling modes, where programming is discussed in
more detail.)

Wait until the scope unit is ready.

Stop capturing data.

Copy data to a buffer.

Close the scope unit.

A WNRH

R®NOU

Many sample programs are included in the SDK. These demonstrate how to use the
functions of the driver software in each of the modes available.

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 5

2.4 Voltage ranges

Analog input channels

You can set a device input channel to any voltage range from £20 mV to £20 V
(subject to the device specification) with ps2000aSet Channel . Each sample is scaled
to 16 bits, and the minimum and maximum values returned to your application are
given by ps2000aM ni mumval ue and ps2000aMaxi munVal ue as follows:

Function Voltage Value returned
decimal hex
ps2000aMaxi munval ue maximum | 32 512 7F00
zero 0 0000
ps2000aM ni munal ue minimum | -32 512 8100
Example
1. Call
ps2000aSet Channel IV — — — — — — — — — — — - 7F00 +32512
with r ange set to

PS2000A_1V. +500 mv

_______ — — — - 3F80 +16256
2. Apply a sine wave \ /\
input of 500 mV oV 0000 O
amplitude to the \/ \
oscilloscope.
500mMV—f — — =~—~" 2 C080 -16 256

3. Capture some data
using the desired
sampling mode. A 8100 -32512

4. The data will be
encoded as shown
opposite.

External trigger input (PicoScope 2206, 2207 and 2208 only)
The external trigger input (marked EXT), where available, is scaled to a 16-bit value

as follows:
Voltage Constant Digital value
-5V PS2000A_EXT_M N_VALUE -32 767
oV 0
+5V PS2000A_EXT_MAX_VALUE +32 767

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

Concepts

2.5

2.6

MSO digital data

This section applies to mixed-signal oscilloscopes (MSOs) only

A PicoScope MSO has two 8-bit digital ports—PORTO0 and PORT1—making a total of 16
digital channels.

The data from each port is returned in a separate buffer that is set up by the
ps2000aSet Dat aBuf f er and ps2000aSet Dat aBuf f er s functions. For compatibility with
the analog channels, each buffer is an array of 16-bit words. The 8-bit port data
occupies the lower 8 bits of the word, and the upper 8 bits of the word are undefined.

PORT1 buffer PORTO buffer
Sample, [XXXXXXXX,D15...D8], [XXXXXXXX,D7...D0],

Sample, ; | [XXXXXXXX,D15...D8], ;| [XXXXXXXX,D7...DO], |

Retrieving stored digital data

The following C code snippet shows how to combine data from the two 8-bit ports into
a single 16-bit word and then extract individual bits from the 16-bit word.

/1l Mask Port 1 values to get lower 8 bits
portVal ue = 0x00ff & appDigiBuffers[2][i];

/1 Shift by 8 bits to place in upper 8 bits of 16-bit word
portVal ue <<= 8;

/1 Mask Port O values to get lower 8 bits and apply bitw se
/1 inclusive OR to conbine with Port 1 val ues
portVal ue | = 0x00ff & appDi giBuffers[O][i];

for (bit = 0; bit < 16; bit++)
{

[/l Shift value (32768 - binary 1000 0000 0000 0000),
/1 AND with value to get 1 or 0 for channel.
/1 Order will be D15 to D8, then D7 to DO.

bitVal ue = (0x8000 >> bit) & portValue? 1 : O;
}

Triggering

PicoScope oscilloscopes can either start collecting data immediately or be programmed
to wait for a trigger event. In both cases you need to use the trigger functions:

e ps2000aSet Tri gger Channel Condi ti ons
e ps2000aSet Tri gger Channel Di recti ons
e ps2000aSet Tri gger Channel Properties

Alternatively you can call ps2000aSet Si npl eTri gger, which in turn calls all three of
the above functions and allows you to set up triggers more quickly in simple cases.

A trigger event can occur when one of the signal or trigger input channels crosses a
threshold voltage on either a rising or a falling edge. It is also possible to combine two
inputs using the logic trigger function.

To set up pulse width, delay and dropout triggers, you can also call the pulse width
qualifier function:

e ps2000aSet Pul seW dt hQual i fier

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 7

2.7

Sampling modes
PicoScope 2000 Series oscilloscopes can run in various sampling modes.

® Block mode. In this mode, the scope stores data in internal buffer memory and
then transfers it to the PC. When the data has been collected it is possible to
examine the data, with an optional downsampling factor. The data is lost when a
new run is started in the same segment, the settings are changed, or the scope is
powered down.

® ETS mode. In this mode, it is possible to increase the effective sampling rate of the
scope when capturing repetitive signals. It is a modified form of block mode.

@® Rapid block mode. This is a variant of block mode that allows you to capture more
than one waveform at a time with a minimum of delay between captures. You can
use downsampling in this mode if you wish.

® Streaming mode. In this mode, data is passed directly to the PC without being
stored in the scope's internal buffer memory. This enables long periods of data
collection for chart recorder and data-logging applications. Streaming mode
supports downsampling and triggering, while providing fast streaming at typical
rates of 1 to 10 MS/s, as specified in the data sheet for your device.

In all sampling modes, the driver returns data asynchronously using a callback. This is
a call to one of the functions in your own application. When you request data from the
scope, you pass to the driver a pointer to your callback function. When the driver has
written the data to your buffer, it makes a callback (calls your function) to signal that
the data is ready. The callback function then signals to the application that the data is
available.

Because the callback is called asynchronously from the rest of your application, in a
separate thread, you must ensure that it does not corrupt any global variables while it
runs.

For compatibility with programming environments not supporting C-style callback
functions, polling of the driver is available in block mode.

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

Concepts

2.7.1 Block mode

In

block mode, the computer prompts a PicoScope 2000 Series oscilloscope to collect

a block of data into its internal memory. When the oscilloscope has collected the whole
block, it signals that it is ready and then transfers the whole block to the computer's
memory through the USB port.

2

Block size. The maximum number of values depends upon the size of the
oscilloscope's memory. The memory buffer is shared between the enabled channels,
so if two channels are enabled, each receives half the memory, and if four channels
are enabled, each receives a quarter of the memory. These features are handled
transparently by the driver. The block size also depends on the number of memory
segments in use (see ps2000aMenor ySegnent s).

* The PicoScope MSO models behave differently. If only the two analog channels or
only the two digital ports are enabled, each receives half the memory. If any
combination of one or two analog channels and one or two digital ports is enabled,
each receives a quarter of the memory.

Sampling rate. A PicoScope 2000 Series oscilloscope can sample at a humber of
different rates according to the selected timebase and the combination of channels
that are enabled. See the Timebases section for the specifications that apply to your
scope model.

Setup time. The driver normally performs a number of setup operations, which can
take up to 50 milliseconds, before collecting each block of data. If you need to
collect data with the minimum time interval between blocks, use rapid block mode
and avoid calling setup functions between calls to ps2000aRunBIl ock, ps2000aSt op
and ps2000aCet Val ues.

Downsampling. When the data has been collected, you can set an optional
downsampling factor and examine the data. Downsampling is a process that
reduces the amount of data by combining adjacent samples. It is useful for zooming
in and out of the data without having to repeatedly transfer the entire contents of
the scope's buffer to the PC.

Memory segmentation. The scope's internal memory can be divided into
segments so that you can capture several waveforms in succession. Configure this
using ps2000aMenor ySegnent s.

Data retention. The data is lost when a new run is started in the same segment,
the settings are changed, or the scope is powered down.

See Using block mode for programming details.

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 9

2.7.1.1 Using block mode

This is the general procedure for reading and displaying data in block mode using a
single memory segment:

Note: Use the * steps when using the digital ports on MSO models.

1. Open the oscilloscope using ps2000a0OpenUni t .

2. Select channel ranges and AC/DC coupling using ps2000aSet Channel .

2*, Set the digital port using ps2000aSet Di git al Port .

3. Using ps2000aGet Ti nebase, select timebases until the required nanoseconds per
sample is located.

4, Use the trigger setup functions ps2000aSet Tri gger Channel Condi ti ons,
ps2000aSet Tri gger Channel Di recti ons and
ps2000aSet Tri gger Channel Properti es to set up the trigger if required.

4*, Use the trigger setup functions ps2000aSet Tri gger Di gi t al Port Properties to

set up the digital trigger if required.

Start the oscilloscope running using ps2000aRunBl ock.

6. Wait until the oscilloscope is ready using the ps2000aBl ockReady callback (or
poll using ps2000al sReady).

7. Use ps2000aSet Dat aBuf f er to tell the driver where your memory buffer is. (For
greater efficiency when doing multiple captures, you can call this function
outside the loop, after step 4.)

8. Transfer the block of data from the oscilloscope using ps2000aCet Val ues.

9. Display the data.

10. Stop the oscilloscope using ps2000aSt op.

11. Repeat steps 5 to 9.

12. Request new views of stored data using different downsampling parameters.
See Retrieving stored data.

Ul

Application ‘

G:sZOOOaOpenUnit) >

GsZOOOaSetChannel Set up device
\“:(Start collection)
ps2000aGetTimebase / asese®

GsZOOOa set trigger functions

G:sZOOOaRunBIock

Q\pp: ps2000aBlockReady)‘

(ps2000asetpataButfer }——p
GsZOOOaGetValues)—}

Data processed

2.7.1.2 Asynchronous calls in block mode

To avoid blocking the calling thread when calling ps2000aGet Val ues, it is possible to
call ps2000aGet Val uesAsync instead. This immediately returns control to the calling
thread, which then has the option of waiting for the data or calling ps2000aSt op to
abort the operation.

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

10

Concepts

2.7.2

2.7.21

Rapid block mode

In normal block mode, the PicoScope 2000 Series scopes collect one waveform at a
time. You start the the device running, wait until all samples are collected by the
device, and then download the data to the PC or start another run. There is a time
overhead of tens of milliseconds associated with starting a run, causing a gap between
waveforms. When you collect data from the device, there is another minimum time
overhead which is most noticeable when using a small number of samples.

Rapid block mode allows you to sample several waveforms at a time with the
minimum time between waveforms. It reduces the gap from milliseconds to less than
2 microseconds (on the fastest timebase).

Using rapid block mode

You can use rapid block mode with or without aggregation. With aggregation, you
need to set up two buffers per channel to receive the minimum and maximum values.

Note: Use the * steps when using the digital ports on the mixed-signal (MSO) models.

Without aggregation

1. Open the oscilloscope using ps2000aQpenuni t .

2. Select channel ranges and AC/DC coupling using ps2000aSet Channel .

2*. Set the digital port using ps2000aSet Di gi t al Port.

3. Using ps2000aCet Ti nebase, select timebases until the required nanoseconds per
sample is located.

4, Use the trigger setup functions ps2000aSet Tri gger Channel Condi ti ons,
ps2000aSet Tri gger Channel Di recti ons and
ps2000aSet Tri gger Channel Properti es to set up the trigger if required.

4*. Use the trigger setup functions ps2000aSet Tri gger Di gi t al Port Properties to
set up the digital trigger if required.

5. Set the number of memory segments equal to or greater than the number of

captures required using ps2000aMenor ySegnent s. Use ps2000aSet NoOf Capt ur es

before each run to specify the number of waveforms to capture.

Start the oscilloscope running using ps2000aRunBl ock.

7. Wait until the oscilloscope is ready using the ps2000al sReady or wait on the
callback function.

8. Use ps2000aSet Dat aBuf f er to tell the driver where your memory buffers are.
Call the function once for each channel/segment combination for which you
require data. For greater efficiency, these calls can be made outside the loop,
between steps 5 and 6.

9. Transfer the blocks of data from the oscilloscope using ps2000aCet Val uesBul k.

10. Retrieve the time offset for each data segment using
ps2000aCet Val uesTri gger Ti mef f set Bul k64.

11. Display the data.

12. Repeat steps 6 to 11 if necessary.

13. Stop the oscilloscope using ps2000aSt op.

o

With aggregation
To use rapid block mode with aggregation, follow steps 1 to 7 above and then:

8a. Call ps2000aSet Dat aBuf f er or (ps2000aSet Dat aBuf f er s) to set up one pair of
buffers for every waveform segment required.

9a. Call ps2000aCet Val uesBul k for each pair of buffers.

10a. Retrieve the time offset for each data segment using
ps2000aCet Val uesTri gger Ti meX f set Bul k64.

Continue from step 11.

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 1

2.7.2.2 Rapid block mode example 1: no aggregation

#def i ne MAX_SAMPLES 1000
Set up the device up as usual.

@® Open the device

® Channels

® Trigger

® Number of memory segments (this should be equal or more than the no of captures
required)

/'l set the nunber of waveforns to 32
ps2000aSet NoOf Capt ures (handl e, 32);

pParaneter = fal se;
ps2000aRunBIl ock

(
handl e,
0, /1 noCF PreTrigger Sanpl es
MAX_SAMPLES, // noOf Post Tri gger Sanpl es
1, /1 tinebase to be used
11
&t i mel ndi sposedMs,
0, /1 segment index
| pReady,
&pPar anet er

)

Comment: these variables have been set as an example and can be any valid value.
pPar anmet er will be set true by your callback function | pReady.

while (!pParaneter) Sleep (0);
for (int i =0; i < 10; i++)
{
for (int ¢ = PS2000A_CHANNEL_A; c¢ <= PS2000A CHANNEL_B; c++)

ps2000aSet Dat aBuf f er
(

handl e,

C!
gbuffer[c][i],
MAX_SANPLES,

| ’
PS2000A RATI O_MODE_NONE
)
}
}

Comments: buffer has been created as a two-dimensional array of pointers to int16_t,
which will contain 1000 samples as defined by MAX_SAMPLES. There are only 10 buffers
set, but it is possible to set up to the number of captures you have requested.

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

12 Concepts

ps2000aCet Val uesBul k
(

handl e,

&noOf Sanpl es, /1l set to MAX SAMPLES on entering the
function

10, /'l fronSegnment | ndex

19, /1 toSegnent| ndex

1, /1 downsanpling ratio
PS2000A RATI O MODE_NONE, // downsanpling ratio node

overfl ow /1 an array of size 10 intl16_t

)

Comments: See the earlier snippets for code to set up the segment buffers.

The number of samples could be up to noO PreTri gger Sanpl es +

noCf Post Tri gger Sanpl es, the values set in ps2000aRunBl ock. The samples are
always returned from the first sample taken, unlike the ps2000aGet Val ues function
which allows the sample index to be set. The above segments start at 10 and finish at
19 inclusive. It is possible for the f r onSegnent | ndex to wrap around to the

t oSegnment | ndex, by setting the fronSegnent | ndex to 28 and the t oSegnent | ndex
to 7.

ps2000aCet Val uesTri gger Ti nef f set Bul k64
(

handl e,
tines,
timeUnits,
10,

19

)

Comments: the above segments start at 10 and finish at 19 inclusive. It is possible for
the f r onSegnent | ndex to wrap around to the t oSegnent | ndex, if the
fronBegnent | ndex is set to 28 and the t oSegnent | ndex to 7.

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 13

2.7.2.3 Rapid block mode example 2: using aggregation

#def i ne MAX_SAMPLES 1000
Set up the device up as usual.

@® Open the device

® Channels

® Trigger

® Number of memory segments (this should be equal or more than the number of
captures required)

/'l set the nunber of waveforns to 32
ps2000aSet NoOf Capt ur es(handl e, 32);

pParaneter = fal se;
ps2000aRunBIl ock

(

handl e,

0, /1 noCF PreTrigger Sanpl es,
MAX_SAMPLES, /1 noCF Post Tri gger Sanpl es,
1, /1 tinebase to be used,

1,

&t i mel ndi sposedMs,

1, /1 Segment | ndex

| pReady,

&pPar anet er

)

Comments: the set-up for running the device is exactly the same whether or not
aggregation will be used when you retrieve the samples.

for (int segnment = 10; segnment < 20; segnent ++)
for (int ¢ = PS2000A_CHANNEL_A; c¢ <= PS2000A CHANNEL_D; c++)

ps2000aSet Dat aBuf f er s
(

handl e,

C,
&buf f er Max| c],
&uf ferM n[c]
MAX_SAMPLES
segnent,
PS2000A_RATI O_MODE_AGGREGATE
)
}
}

Comments: since only one waveform will be retrieved at a time, you only need to set
up one pair of buffers; one for the maximum samples and one for the minimum
samples. Again, the buffer sizes are 1000 (MAX_SAMPLES) samples.

ps2000aCet Val ues
(

handl e,

01

&noOf Sanpl es, /'l set to MAX SAMPLES on entering
10,

&JdownSanpl eRat i oMbde, //set to RATI O MODE AGGREGATE

i ndex,

overfl ow

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

14 Concepts

ps2000aGet Tri gger Ti nef f set 64

handl e,
&tine,

& inmelnits,
i ndex

)

Comments: each waveform is retrieved one at a time from the driver with an
aggregation of 10.

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 15

2.7.3

ETS (Equivalent Time Sampling)

ETS is a way of increasing the effective sampling rate of the scope when capturing
repetitive signals. It is a modified form of block mode, and is controlled by the
ps2000a set of trigger functions and the ps2000aSet Et s function.

® Overview. ETS works by capturing several cycles of a repetitive waveform, then

combining them to produce a composite waveform that has a higher effective
sampling rate than the individual captures. The scope hardware accurately
measures the delay, which is a small fraction of a single sampling interval, between
each trigger event and the subsequent sample. The driver then shifts each capture
slightly in time and overlays them so that the trigger points are exactly lined up.
The result is a larger set of samples spaced by a small fraction of the original
sampling interval. The maximum effective sampling rates that can be achieved with
this method are listed in the User's Guide for the scope device. Other scopes do not
contain special ETS hardware, so the composite waveform is created by software.

Trigger stability. Because of the high sensitivity of ETS mode to small time
differences, the trigger must be set up to provide a stable waveform that varies as
little as possible from one capture to the next.

Callback. ETS mode calls the ps2000aBl ockReady callback function when a new
waveform is ready for collection. The ps2000aGet Val ues function needs to be called
for the waveform to be retrieved.

Applicability |Available in block mode only.

Not suitable for one-shot (non-repetitive) signals.
Aggregation is not supported.

Edge-triggering only.

Auto trigger delay (aut oTri ggerM | | i seconds) is ignored.
Cannot be used when MSO digital ports are enabled.

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

16 Concepts

2.7.3.1 Using ETS mode

This is the general procedure for reading and displaying data in ETS mode using a
single memory segment:

Open the oscilloscope using ps2000aOpenUni t .

Select channel ranges and AC/DC coupling using ps2000aSet Channel .

Use ps2000aSet Et s to enable ETS and set the parameters.

Use the trigger setup functions ps2000aSet Tri gger Channel Condi ti ons,

ps2000aSet Tri gger Channel Di recti ons and

ps2000aSet Tri gger Channel Properti es to set up the trigger if required.

Start the oscilloscope running using ps2000aRunBl ock.

6. Wait until the oscilloscope is ready using the ps2000aBl ockReady callback (or
poll using ps2000al sReady).

7. Use ps2000aSet Dat aBuf f er to tell the driver where to store sampled data.

8. Use ps2000sSet Et sTi neBuf f er or ps2000sSet Et sTi meBuf f er s to tell the driver
where to store sample times.

9. Transfer the block of data from the oscilloscope using ps2000aGet Val ues.

10. Display the data.

11. While you want to collect updated captures, repeat steps 7 to 10.

12. Stop the oscilloscope using ps2000aSt op.

13. Repeat steps 5 to 12.

A WNR

Ul

Application ‘

G)sZOOOaOpenUnit) >

GsZOOOaSetChanneD/ Set up device
\:(Start collection)
G}sZOOOaSetEts aeees®®

GsZOOOaSetTrigger functions

GsZOOOaRunBIock

App: ps2000aBlockReady

GsZOOOa SetDataBuffer

G:sZOOOa SetEtsTimeBuffer(s))—} Data processed
ps2000aGetValues)—>

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 17

2.7.4 Streaming mode

Streaming mode, unlike block mode, can capture data without gaps between blocks.
Streaming mode supports downsampling and triggering, while providing fast
streaming. This makes it suitable for high-speed data acquisition, allowing you to
capture long data sets limited only by the computer's memory.

® Aggregation. The driver returns aggregated readings while the device is
streaming. If aggregation is set to 1, only one buffer is used per channel. When
aggregation is set above 1, two buffers (maximum and minimum) per channel are
used.

® Memory segmentation. The memory can be divided into segments to reduce the
latency of data transfers to the PC. However, this increases the risk of losing data if
the PC cannot keep up with the device's sampling rate.

See Using streaming mode for programming details.

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

18

Concepts

2.7.4.1 Using streaming mode

This is the general procedure for reading and displaying data in streaming mode using
a single memory segment:

Note: Please use the * steps when using the digital ports on the mixed-signal (MSQO)

models.

1. Open the oscilloscope using ps2000a0OpenUni t .

2. Select channels, ranges and AC/DC coupling using ps2000aSet Channel .

*2. Set the digital port using ps2000aSet Di gi t al Port .

3. Use the trigger setup functions ps2000aSet Tri gger Channel Condi ti ons,
ps2000aSet Tri gger Channel Di recti ons and
ps2000aSet Tri gger Channel Properti es to set up the trigger if required.

*3. Use the trigger setup functions ps2000aSet Tri gger Di gi t al Port Properti es to
set up the digital trigger if required.

4, Call ps2000aSet Dat aBuf f er (or ps2000aSet Dat aBuf f er s if you will be using
aggregation) to tell the driver where your data buffer is.

5. Start the oscilloscope running using ps2000aRunSt r eani ng.

6. Call ps2000aGet St r eani nglLat est Val ues to get data.

7. Process data returned to your application's function. This example is using
aut oSt op, so after the driver has received all the data points requested by the
application, it stops the device streaming.

8. Call ps2000aSt op, even if aut oSt op is enabled.

Application ‘

G:sZOOOaOpenUnit
Set up device
G:szoooa set trigger functions
Start streaming)
GsZOOOaSetDataBuffer " asssasests®

@)

(Get data)

GsZOOOaRunStreaming

GsZOOOaGetStreamingLatestVa lues

-

Data processed

Gpp: ps2000aStreamingReady

\
7'y autostop

\‘(Stop streaming)

ITT

G)sZOOOaStop End streaming

Request new views of stored data using different downsampling parameters: see
Retrieving stored data.

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 19

2.7.5 Retrieving stored data
You can collect data from the ps2000a driver with a different downsampling factor
when ps2000aRunBl ock or ps2000aRunSt r eani ng has already been called and has
successfully captured all the data. Use ps2000aGet Val uesAsync.

Application ‘

(psZOOOaSetDataBuffer

> Data processed

»

\/

(psZOOOaGetVaIuesAsync

(App: ps2000aDataReady

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

20

Concepts

2.8

Timebases

The ps2000a API allows you to select any of 232 different timebases based on the
maximum sampling rate™ of your oscilloscope. The timebases allow slow enough
sampling in block mode to overlap the streaming sample intervals, so that you can
make a smooth transition between block mode and streaming mode. Calculate the

timebase using the ps2000aCet Ti nebase call.

500 MS/s maximum sampling rate models:

timebase (n) sample interval formula

0
1 2" / 500,000,000
3to 2321 (n - 2) / 62,500,000

1 GS/s maximum sampling rate models:

timebase (n) sample interval formula

2"/ 1,000,000,000

3to0 232-1 (n - 2) /125,000,000
PicoScope 2205 MSO:
timebase (n) sample interval formula

0 2" /200,000,000

n / 100,000,000
3to 2321

sample interval examples
2 ns*
4 ns
8 ns
3=>16ns

232—1 =>n~69s

sample interval examples
1 ns*
2 ns
4 ns
3=>8ns

2321 ->n~345s

sample interval examples
0 => 5 ns**

10 ns
20 ns
3=>30ns

2321 ->~43s

T The fastest available sampling rate may depend on which channels are enabled, and on the sampling
mode. Refer to the oscilloscope data sheet for sampling rate specifications. In streaming mode the
sampling rate may additionally be limited by the speed of the USB port.

* Available only in single-channel mode.

** Not available when channel B active, nor when channel A and both digital ports active.

ETS mode

In ETS mode the sample time is not set according to the above tables but is instead

calculated and returned by ps2000aSet Et s.

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide

21

2.9 MSO digital connector diagram

The MSO models have a digital input connector. The layout of the 20-pin header plug
is detailed below. The diagram is drawn as you look at the front panel of the device.

D1 D9 D4 D2 DO
Dj2|D1D_| D8 | D3 | D

T T

D15 ‘ DM_} D13 ‘ GND ‘ GND ‘
GND GND D7 D6 D5

2.10 Combining several oscilloscopes

It is possible to collect data using up to 64 PicoScope 2000 Series oscilloscopes at the
same time, subject to the capabilities of the PC. Each oscilloscope must be connected
to a separate USB port. The ps2000aOpenUni t function returns a handle to an
oscilloscope. All the other functions require this handle for oscilloscope identification.

For example, to collect data from two oscilloscopes at the same time:

CALLBACK ps2000aBl ockReady(. . .)
/1 define callback function specific to application

handl el
handl e2

ps2000aCpenUni t ()
ps2000a0CpenUni t ()

ps2000aSet Channel (handl el)

/[l set up unit 1

ps2000aSet Digi tal Port // only when using MO
ps2000aRunBl ock(handl el)

ps2000aSet Channel (handl e2)

[l set up unit 2

ps2000aSet Di gi tal Port // only when using MO
ps2000aRunBl ock(handl e2)

/] data will be stored in buffers
/1 and application will be notified using callback

ready = FALSE
whi |l e not ready
ready = handl el_ready

ready &= handl e2_ready

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

ps2000apg.en r9

22 API functions

3 APl functions

The ps2000a API exports the following functions for you to use in your own
applications. All functions are C functions using the standard call naming convention
(__stdcal l). They are all exported with both decorated and undecorated names.

ps2000aBl ockReady - find out if block-mode data ready

ps2000ad oseUni t - close a scope device

ps2000abat aReady - find out if post-collection data ready

ps2000aEnuner at eUni t s - find all connected oscilloscopes

ps2000aFl ashLed - flash the front-panel LED

ps2000aCet Anal ogue f set — get allowable offset range

ps2000aCet Channel | nf or mat i on — get list of available ranges

ps2000aCet MaxDownSanpl eRat i 0o — get aggregation ratio for data

ps2000aCet MaxSegnent s — find out how many segments allowed

ps2000aCet NoOF Capt ur es — get number of captures available

ps2000aGet NoOF Pr ocessedCapt ur es — get number of captures processed
ps2000aCet St r eam nglat est Val ues — get streaming data while scope is running
ps2000aCet Ti nebase - find out what timebases are available

ps2000aCet Ti nebase2 - find out what timebases are available

ps2000aCet Tri gger Ti me)f f set - find out when trigger occurred (32-bit)
ps2000aCet Tri gger Ti me)f f set 64 - find out when trigger occurred (64-bit)
ps2000aCet Uni t | nf o — get information about scope device

ps2000aCet Val ues — get block-mode data with callback

ps2000aCet Val uesAsync — get streaming data with callback

ps2000aCet Val uesBul k — get data in rapid block mode

ps2000aCet Val uesOver | apped - set up data collection ahead of capture
ps2000aCet Val uesOver | appedBul k — set up data collection in rapid block mode
ps2000aCet Val uesTri gger Ti me) f set Bul k — get rapid-block waveform times (32-bit)
ps2000aCet Val uesTri gger Ti me)f f set Bul k64 — get rapid-block waveform times
(64-bit)

ps2000aHol dOF f - not supported

ps2000al sReady - poll driver in block mode

ps2000al sTri gger O Pul seW dt hQual i fi er Enabl ed - get trigger status
ps2000aMaxi munval ue — get maximum ADC count in get-values calls
ps2000aMenor ySegnent s — divide scope memory into segments

ps2000aM ni munval ue — get minimum ADC count in get-values calls
ps2000aNoC) St r eami ngVal ues — get number of samples in streaming mode
ps2000a0OpenUni t — open a scope device

ps2000a0OpenUni t Async — open a scope device without blocking

ps2000a0penUni t Progr ess — check progress of OpenUnit call

ps2000aPi ngUni t — check communication with opened device

ps2000aRunBl ock — capture in block mode

ps2000aRunSt r eam ng — capture in streaming mode

ps2000aSet Channel - set up input channel

ps2000aSet Dat aBuf f er - register data buffer with driver

ps2000aSet Dat aBuf f er s — register aggregated data buffers with driver
ps2000aSet Di gi t al Anal ogTri gger Oper and — set up combined analog/digital trigger
ps2000aSet Di gi t al Port - set up digital input

ps2000aSet Et s — set up equivalent-time sampling

ps2000aSet Et sTi meBuf f er — set up 64-bit buffer for ETS timings

ps2000aSet Et sTi neBuf f ers — set up 32-bit buffers for ETS timings

ps2000aSet NoOF Capt ur es — set number of captures to collect in one run
ps2000aSet Pul seW dt hDi gi t al Port Properties — set pulse-width triggering on digital
inputs

ps2000aSet Pul seW dt hQual i fi er — set up pulse width triggering

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 23

ps2000aSet Si gGenArbitrary - set up arbitrary waveform generator

ps2000aSet Si gGenBui | t | n — set up standard signal generator

ps2000Set Si gGenBui | t 1 nV2 — double precision sig. gen. setup

ps2000aSet Si gGenProperti esArbitrary — change AWG properties

ps2000aSet Si gGenProperti esBui |l t| n = change standard signal generator properties
ps2000aSet Si npl eTri gger — set up level triggers

ps2000aSet Tri gger Channel Condi ti ons — specify which channels to trigger on
ps2000aSet Tri gger Channel Di recti ons — set up signal polarities for triggering
ps2000aSet Tri gger Channel Properti es — set up trigger thresholds

ps2000aSet Tri gger Del ay — set up post-trigger delay

ps2000aSet Tri gger Di gi t al Port Properti es — set up digital channel trigger directions
ps2000aSi gGenAr bi traryM nMaxVal ues — query AWG parameter limits

ps2000aSi gGenFr equencyToPhase - calculate AWG phase from frequency

ps2000aSi gGenSof t war eCont r ol - trigger the signal generator

ps2000aSt op — stop data capture

ps2000aSt r eam ngReady - find out if streaming-mode data ready

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

24 API functions

3.1 ps2000aBlockReady
typedef void (CALLBACK *ps2000aBl ockReady)
(

intl6 t handl e,
PI CO STATUS st at us,
voi d * pPar anet er

)

This callback function is part of your application. You register it with the ps2000a
driver using ps2000aRunBl ock, and the driver calls it back when block-mode data is
ready. You can then download the data using the ps2000aCet Val ues function.

Applicability |Block mode only

Arguments handl e, device identifier returned by ps2000aCpenUni t .

st at us, indicates whether an error occurred during collection of the
data.

* pParanet er, a void pointer passed from ps2000aRunBIl ock. Your
callback function can write to this location to send any data, such as
a status flag, back to your application.

Returns nothing

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide

25

3.2 ps2000aCloseUnit
Pl CO STATUS ps2000aC oseUni t

intl6 t handl e
)

This function shuts down an oscilloscope.

Applicability |All modes

Arguments handl e, device identifier returned by ps2000aCpenUni t .

Returns PI CO_X
Pl CO_HANDLE_| NVALI D
Pl CO_USER_CALLBACK
Pl CO_DRI VER_FUNCTI ON

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

ps2000apg.en r9

26

API functions

3.3 ps2000aDataReady
typedef void (__stdcall *ps2000aDat aReady)
(

intl6 t handl e,

PI CO STATUS st at us,

ui nt 32_t noCf Sanpl es,
intl6 t overfl ow,
voi d * pPar anet er

)

This is a callback function that you write to collect data from the driver. You supply a
pointer to the function when you call ps2000aCet Val uesAsync, and the driver calls
your function back when the data is ready.

Applicability
Arguments

Returns

All modes
handl e, device identifier returned by ps2000aCpenUni t .

status, a Pl CO STATUS code returned by the driver.
noCf Sanpl es, the number of samples collected.

overfl ow, a set of flags that indicates whether an overvoltage has
occurred and on which channels. It is a bit field with bit O
representing Channel A.

* pParanet er, a void pointer passed from ps2000aGet Val uesAsync.
The callback function can write to this location to send any data, such
as a status flag, back to the application. The data type is defined by
the application programmer.

nothing

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 27

3.4 ps2000aEnumerateUnits
Pl CO STATUS ps2000aEnunerateUnits

intl6 t * count,

int8 t * serials,

intl6 t * seriallLth
)

This function counts the number of PicoScope 2000 Series (A API) units connected to
the computer, and returns a list of serial numbers as a string.

Applicability |All modes
Arguments * count, on exit, the number of ps2000a units found.

* serials, on exit, alist of serial numbers separated by commas
and terminated by a final null.

Example: AQD05/ 139, VDR61/ 356, ZOR14/ 107
Can be NULL on entry if serial numbers are not required.

* serial Lth, on entry, the length of the char buffer pointed to by

serial s; on exit, the length of the string written to seri al s.
Returns PI CO_ K

Pl CO_BUSY

Pl CO_NULL_PARAMETER

Pl CO_FW FAI L

PI CO_CONFI G_FAI L

PI CO_MEMORY_FAI L

Pl CO_CONFI G_FAI L_AWG

PI CO_I NI TI ALI SE_FPGA

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

28 API functions

3.5 ps2000aFlashLed
Pl CO STATUS ps2000aFl ashLed

intl6 t handl e,
intl6 t start

)

This function flashes the LED on the front of the scope without blocking the calling
thread. Calls to ps2000aRunSt r eanmi ng and ps2000aRunBl ock cancel any flashing
started by this function. It is not possible to set the LED to be constantly illuminated,
as this state is used to indicate that the scope has not been initialized.

Applicability |All modes

Arguments handl e, device identifier returned by ps2000aCpenUni t .

start, the action required:

< 0 : flash the LED indefinitely

0 : stop the LED flashing

> 0 :flash the LED start times. If the LED is already flashing
on entry to this function, the flash count will be reset to

start.
Returns PI CO_K
Pl CO_HANDLE_| NVALI D
Pl CO_BUSY

Pl CO DRI VER_FUNCTI ON
Pl CO_NOT_RESPONDI NG

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 29

3.6 ps2000aGetAnalogueOffset
Pl CO STATUS ps2000aCet Anal ogue f set

(
intl6 t handl e,
PS2000A RANGE range,
PS2000A COUPLI NG coupling
fl oat * maxi mumvol t age,
fl oat * m ni rumvol t age
)

This function is used to get the maximum and minimum allowable analog offset for a
specific voltage range.

Applicability |All ps2000a units except the PicoScope 2205 MSO
Arguments handl e, device identifier returned by ps2000aCpenUni t .

range, the voltage range to be used when gathering the min and
max information.

coupl i ng, the type of AC/DC coupling used.

* maxi munvol t age, output: maximum voltage allowed for the
range. Pointer will be ignored if NULL. If device does not support
analog offset, zero will be returned.

* m ni mnunVol t age, output: minimum voltage allowed for the range.
Pointer will be ignored if NULL. If device does not support analog
offset, zero will be returned.

If both maxi munmVol t age and mi ni nunVol t age are NULL, the driver
will return PI CO NULL_PARAMETER.

Returns Pl CO_OK
— Pl CO_| NVALI D_HANDLE

PI CO_DRI VER_FUNCTI ON
PI CO_| NVALI D_VOLTAGE_RANGE
Pl CO_NULL_PARAMETER

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

30 API functions

3.7 ps2000aGetChannellnformation
Pl CO STATUS ps2000aGet Channel | nf or mati on

(
intl6 t handl e,
PS2000A CHANNEL INFO info
int32_t pr obe
int32_t * ranges
int32_t * |length
int32 t channel s

)

This function queries which ranges are available on a scope device.

Applicability |All modes
Arguments handl e, device identifier returned by ps2000aCpenUni t .

i nfo, the type of information required. The following value is

currently supported:
PS2000A CI _RANGES

pr obe, not used, must be set to 0.
* ranges, an array that will be populated with available

PS2000A RANGE values for the given i nf o. If NULL, | engt h is set to
the number of r anges available.

* | ength, input: length of ranges array; output: number of
elements written to ranges array.

channel s, the channel for which the information is required.
Returns PI CO_OK

Pl CO_HANDLE_| NVALI D

Pl CO_BUSY

Pl CO_DRI VER_FUNCTI ON

Pl CO_NOT_RESPONDI NG

Pl CO_NULL_PARAMETER

Pl CO_I NVALI D_CHANNEL

Pl CO_| NVALI D_I NFO

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 31

3.8 ps2000aGetMaxDownSampleRatio

Pl CO STATUS ps2000aGet MaxDownSanpl eRati o
(

intl6 t handl e,

ui nt 32_t noCOf Unaggr egat edSanpl es,
ui nt 32_t * maxDownSanpl eRat i o,
PS2000A RATI O MODE downSanpl eRat i ovbde,
uint16_t segnment | ndex

)

This function returns the maximum downsampling ratio that can be used for a given
number of samples in a given downsampling mode.

Applicability |All modes
Arguments handl e, device identifier returned by ps2000aOpenUni t .

noCf Unaggr egat edSanpl es, the number of unprocessed samples to
be downsampled.

* maxDownSanpl eRati o, the maximum possible downsampling ratio
output.

downSanpl eRat i oMbde, the downsampling mode. See
ps2000aCet Val ues.

segnent | ndex, the memory segment where the data is stored.
Returns PI CO_OK

Pl CO_| NVALI D_HANDLE

Pl CO_NO_SAMPLES_AVAI LABLE

Pl CO_NULL_PARAMETER

Pl CO_I NVALI D_PARAMETER

Pl CO_SEGVENT _OUT_OF RANGE

Pl CO_TOO _MANY_SAMPLES

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

32 API functions

3.9 ps2000aGetMaxSegments
Pl CO _STATUS ps2000aGet MaxSegnent s

intl6 t handl e,
uintl6_t * maxsegnents

)

This function returns the maximum number of segments allowed for the opened
variant. Refer to ps2000aMenor ySegnent s for specific figures.

Applicability |All modes
Arguments handl e, device identifier returned by ps2000aCpenUni t .

* maxsegnent s, output: maximum number of segments allowed.
Returns PI CO_OK

PI CO_| NVALI D_HANDLE

PI CO_DRI VER_FUNCTI ON

Pl CO_NULL_PARAMETER

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 33

3.10 ps2000aGetNoOfCaptures
Pl CO STATUS ps2000aGet NoOf Capt ur es

intl6 t handl e,
uint32_t * nCaptures

)

This function finds out how many captures are available in rapid block mode after
ps2000aRunBl ock has been called when either the collection completed or the
collection of waveforms was interrupted by calling ps2000aSt op. The returned value
(nCapt ur es) can then be used to iterate through the number of segments using
ps2000aCet Val ues, or in a single call to ps2000aCet Val uesBul k where it is used to
calculate the t 0Segnent | ndex parameter.

Applicability |Rapid block mode
Arguments handl e, device identifier returned by ps2000aOpenUni t .

* nCapt ures, output: the number of available captures that has

been collected from calling ps2000aRunBlI ock.
Returns PI CO_OK

Pl CO_DRI VER_FUNCTI ON

Pl CO_| NVALI D_HANDLE

Pl CO_NOT_RESPONDI NG

Pl CO_NO_SAMPLES_AVAI LABLE

Pl CO_NULL_PARAMETER

Pl CO_I NVALI D_PARAMETER

Pl CO_SEGVENT _OUT_OF RANGE

Pl CO_TOO _MANY_SAMPLES

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

34 API functions

3.11 ps2000aGetNoOfProcessedCaptures
Pl CO STATUS ps2000aGet NoOf Pr ocessedCapt ur es

intl6 t handl e,
uint32_t * nCaptures

)

This function finds out how many captures in rapid block mode have been processed
after ps2000aRunBIl ock has been called when either the collection completed or the
collection of waveforms was interrupted by calling ps2000aSt op. The returned value
(nCapt ur es) can then be used to iterate through the number of segments using
ps2000aCet Val ues, or in a single call to ps2000aCet Val uesBul k where it is used to
calculate the t 0Segnent | ndex parameter.

Applicability |Rapid block mode
Arguments handl e, device identifier returned by ps2000aOpenUni t .

* nCapt ures, output: the number of available captures that has
been collected from calling ps2000aRunBlI ock.
Returns PI CO_OK
Pl CO_DRI VER_FUNCTI ON
Pl CO_| NVALI D_HANDLE
Pl CO_NO_SAMPLES_AVAI LABLE
Pl CO_NULL_PARAMETER
Pl CO_I NVALI D_PARAMETER
Pl CO_SEGVENT _OUT_OF RANGE
Pl CO_TOO _MANY_SAMPLES

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 35

3.12 ps2000aGetStreaminglLatestValues
Pl CO STATUS ps2000aGet Streani nglLat est Val ues

intl6 t handl e,
ps2000asSt r eam ngReady | pPs2000AReady,
voi d * pPar anet er

)

This function instructs the driver to return the next block of values to your
ps2000aSt r eam ngReady callback function. You must have previously called
ps2000aRunSt r eam ng beforehand to set up streaming.

Applicability |Streaming mode only
Arguments handl e, device identifier returned by ps2000aCpenUni t .

| pPs2000AReady, a pointer to your ps2000aSt r eani ngReady
callback function.

* pParanet er, a void pointer that will be passed to the

ps2000aSt r eam ngReady callback function. The callback function may

optionally use this pointer to return information to the application.
Returns Pl CO_OK

Pl CO_| NVALI D_HANDLE

Pl CO_NO_SAMPLES_AVAI LABLE

Pl CO_| NVALI D_CALL

Pl CO_BUSY

Pl CO_NOT_RESPONDI NG

Pl CO_DRI VER_FUNCTI ON

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

36 API functions

3.13 ps2000aGetTimebase
Pl CO STATUS ps2000aCet Ti nebase

(
intl6 t handl e,
uint32_t ti mebase,
int32_t noSanpl es,
int32_t * tinelnterval Nanoseconds,
intl6_t over sanpl e,
int32_t * maxSanpl es
uint16_t segnment | ndex
)

This function calculates the sampling rate and maximum number of samples for a
given timebase under the specified conditions. The result will depend on the number of
channels enabled by the last call to ps2000aSet Channel .

This function is provided for use with programming languages that do not support the
f1 oat data type. The value returned in the ti nel nt er val Nanoseconds argument is
restricted to integers. If your programming language supports the f |l oat type, we
recommend that you use ps2000aCet Ti nebase?2 instead.

To use ps2000aCet Ti nebase or ps2000aGet Ti nebase?, first estimate the timebase
number that you require using the information in the timebase guide. Next, call one of
these functions with the timebase that you have just chosen and verify that the

ti mel nt er val Nanoseconds argument that the function returns is the value that you
require. You may need to iterate this process until you obtain the time interval that
you need.

Applicability |All modes
Arguments handl e, device identifier returned by ps2000aOpenUni t .

ti mebase, see timebase guide.

noSanpl es, the number of samples required.

* tinmelnterval Nanoseconds, on exit, the time interval between
readings at the selected timebase. Use NULL if not required. In ETS
mode this argument is not valid; use the sample time returned by
ps2000aSet Et s instead.

over sanpl e, not used.

* maxSanpl es, on exit, the maximum number of samples available.
The scope allocates a certain amount of memory for internal
overheads and this may vary depending on the number of segments,
number of channels enabled, and the timebase chosen. Use NULL if
not required.

segnent | ndex, the index of the memory segment to use.
Returns PI CO_ K

PI CO_I NVALI D_HANDLE

Pl CO_TOO MANY_SAMPLES

PI CO_I NVALI D_CHANNEL

Pl CO_I NVALI D_TI MEBASE

Pl CO_I NVALI D_PARAMETER

Pl CO_SEGVENT _OUT_OF RANGE

Pl CO_DRI VER_FUNCTI ON

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 37

3.14 ps2000aGetTimebase2
Pl CO STATUS ps2000aGet Ti nebase?2

(
intl6 t handl e,
uint32_t ti mebase,
int32_t noSanpl es,
fl oat * tinmelnterval Nanoseconds,
intl6_t over sanpl e,

int32_t * maxSanpl es
uint16_t segnment | ndex

)

This function is an upgraded version of ps2000aCet Ti nebase, and returns the time
interval as a f| oat rather than a | ong. This allows it to return sub-nanosecond time
intervals. See ps2000aGet Ti nebase for a full description.

Applicability |All modes

Arguments * tinmelnterval Nanoseconds, a pointer to the time interval between

readings at the selected timebase. If a null pointer is passed, nothing
will be written here.

All other arguments: see ps2000aGet Ti nebase.
Returns See ps2000aGet Ti nebase.

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

38 API functions

3.15 ps2000aGetTriggerTimeOffset
Pl CO STATUS ps2000aGet Tri gger Ti neCf f set

(
intl6 t handl e
ui nt 32_t * timeUpper
uint32_t * tinmeLower
PS2000A TIME UNITS * timeUnits
uint16_t segnment | ndex
)

This function gets the time, as two 4-byte values, at which the trigger occurred. Call it
after block-mode data has been captured or when data has been retrieved from a
previous block-mode capture. A 64-bit version of this function,

ps2000aCet Tri gger Ti me) f set 64, is also available.

Applicability |Block mode, rapid block mode

Arguments handl e, device identifier returned by ps2000a0OpenUni t .

* timeUpper, on exit, the upper 32 bits of the time at which the
trigger point occurred.

* tinmeLower, on exit, the lower 32 bits of the time at which the
trigger point occurred.

* tinmeUnits, returns the time units in which ti neUpper and

ti meLower are measured. The allowable values are:
PS2000A FS
PS2000A PS
PS2000A NS
PS2000A US
PS2000A M5
PS2000A S

segnent | ndex, the number of the memory segment for which the

information is required.
Returns PI CO_K
Pl CO_| NVALI D_HANDLE
Pl CO_DEVI CE_SAMPLI NG
Pl CO_SEGVENT _OUT_OF RANGE
Pl CO_ NOT_USED | N_TH S_CAPTURE_MODE
Pl CO_NOT_RESPONDI NG
Pl CO_NULL_PARAMETER
Pl CO_NO_SAMPLES_AVAI LABLE
Pl CO_DRI VER_FUNCTI ON

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 39

3.16 ps2000aGetTrigger TimeOffset64
Pl CO STATUS ps2000aGet Tri gger Ti neCf f set 64

(
intl6 t handl e,
int64 t * tine,
PS2000A TIME_UNITS * tineUnits,
uint16_t segnment | ndex
)

This function gets the time, as a single 64-bit value, at which the trigger occurred. Call
it after block-mode data has been captured or when data has been retrieved from a
previous block-mode capture. A 32-bit version of this function,

ps2000aCet Tri gger Ti me) f set , is also available.

Applicability |Block mode, rapid block mode

Arguments handl e, device identifier returned by ps2000a0OpenUni t .

* tinme, on exit, the time at which the trigger point occurred.

* timeUnits, on exit, the time units in which time is measured. The
possible values are:

PS2000A FS

PS2000A PS

PS2000A NS

PS2000A US

PS2000A M5

PS2000A S

segnent | ndex, the number of the memory segment for which the
information is required.
Returns PI CO_K
Pl CO_| NVALI D_HANDLE
Pl CO_DEVI CE_SAMPLI NG
Pl CO_SEGVENT _OUT_OF RANGE
Pl CO_ NOT_USED | N_TH S_CAPTURE_MODE
Pl CO_NOT_RESPONDI NG
Pl CO_NULL_PARAMETER
Pl CO_NO_SAMPLES_AVAI LABLE
Pl CO_DRI VER_FUNCTI ON

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

40 API functions

3.17 ps2000aGetUnitinfo
Pl CO STATUS ps2000aGet UnitlInfo

(
intl6 t handl e,
int8_t * string,
intl6_t stringLengt h,

intl6_t * requiredSize
PICOINFO info
)

This function retrieves information about the specified oscilloscope. If the device fails
to open, or no device is opened only the driver version is available.

Applicability |All modes

Arguments handl e, device identifier returned by ps2000aOpenUnit. If an invalid
handle is passed, only the driver versions can be read.

* string, on exit, the unit information string selected specified by
the i nf o argument. If string is NULL, only requi redSi ze is
returned.

stringlLength, the maximum number of chars that may be written
to string.

* requiredSi ze, on exit, the required length of the stri ng array.

i nf o, a number specifying what information is required. The
possible values are listed in the table below.
Returns PI CO_K
PI CO_I NVALI D_HANDLE
Pl CO_NULL_PARAMETER
PI CO_I NVALI D_I NFO
Pl CO_I| NFO_UNAVAI LABLE
Pl CO_DRI VER_FUNCTI ON

info Example

0 |PI CO DRI VER _VERSI ON 1,0,0,1
Version number of PicoScope 2000A DLL

1 |PI CO_USB_VERSI ON 2.0
Type of USB connection to device: 1.1 or 2.0

2 |PI CO_HARDWARE_VERSI ON 1
Hardware version of device

3 |PI CO_VARI ANT_I NFO 2206
Variant number of device

4 |PI CO BATCH AND SERI AL KJL87/6
Batch and serial number of device

5 |PICO CAL_DATE 30Sep09
Calibration date of device

6 |PI CO_KERNEL_VERSI ON 1,1,2,4
Version of kernel driver

7 |PICO_DI G TAL_HARDWARE_VERSI ON 1
Hardware version of the digital section

8 |PI CO_ANALOCGUE_HARDWARE_VERSI ON 1
Hardware version of the analog section

9 |PI CO_FI RMAMARE_VERSI ON_1 1.0.0.0

10 Pl CO_FI RMAMARE_VERSI ON_2 1.0.0.0

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 41

3.18 ps2000aGetValues
Pl CO STATUS ps2000aCet Val ues

-
intl1l6_t
uint32_t
uint32_t
ui nt 32_t

handl e,
start | ndex,

* noOf Sanpl es,
downSanpl eRat i o,

PS2000A RATI O MODE downSanpl eRat i oMbde,

uint16_t
intl6 t
)

segnent | ndex,
* overfl ow

This function returns block-mode data, with or without downsampling, starting at the
specified sample number. It is used to get the stored data from the driver after data
collection has stopped.

Applicability
Arguments

Block mode, rapid block mode

handl e, device identifier returned by ps2000aCpenUni t.

startlndex, a zero-based index that indicates the start point for
data collection. It is measured in sample intervals from the start of
the buffer.

* noOf Sanpl es, on entry, the number of samples required. On exit,
the actual number retrieved. The number of samples retrieved will
not be more than the number requested, and the data retrieved
starts at st art | ndex.

downSanpl eRati o, the downsampling factor that will be applied to
the raw data.

downSanpl eRat i oMbde, which downsampling mode to use. The
available values are:
PS2000A RATI O_MODE_NONE (downSanpl eRat i o is ignored)
PS2000A_RATI O MODE_AGGREGATE
PS2000A_RATI O MODE_AVERAGE
PS2000A_RATI O MODE_DECI MATE

AGGREGATE, AVERACGE, DECI MATE are single-bit constants that can be
ORed to apply multiple downsampling modes to the same data.

segnent | ndex, the zero-based number of the memory segment
where the data is stored.

* overflow, on exit, a set of flags that indicate whether an
overvoltage has occurred on any of the channels. It is a bit field with
bit 0 denoting Channel A.

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

42

API functions

Returns

PI CO_OK

Pl CO_I NVALI D_HANDLE

Pl CO_NO_SAMPLES_AVAI LABLE
Pl CO_DEVI CE_SAVPLI NG

Pl CO_NULL_PARAVETER

Pl CO_SEGVENT _OUT_OF RANGE
Pl CO_STARTI NDEX_I NVALI D
Pl CO_ETS_NOT_RUNNI NG

Pl CO_BUFFERS_NOT_SET

Pl CO_I NVALI D_PARAVETER

Pl CO_TOO_MANY_SAMPLES

Pl CO_DATA_NOT_AVAI LABLE
Pl CO_STARTI NDEX_| NVALI D
Pl CO_I NVALI D_SANPLERATI O
Pl CO_| NVALI D_CALL

Pl CO_NOT_RESPONDI NG

Pl CO_MEMORY

Pl CO_RATI O_MODE_NOT_SUPPORTED

Pl CO_DRI VER_FUNCTI ON

3.18.1 Downsampling modes

Various methods of data reduction, or downsampling, are possible with the
PicoScope 2000 Series oscilloscopes. The downsampling is done at high speed by
dedicated hardware inside the scope, making your application faster and more
responsive than if you had to do all the data processing in software.

You specify the downsampling mode when you call one of the data collection functions
such as ps2000aCet Val ues. The following modes are available:

PS2000A RATI O_MODE_AGGREGATE

PS2000A_RATI O_MODE_AVERAGE

PS2000A RATI O_MODE_DECI MATE

Reduces every block of n values to just two

values: a minimum and a maximum. The
minimum and maximum values are
returned in two separate buffers.

Reduces every block of n values to a single

value representing the average (arithmetic
mean) of all the values. Equivalent to the
'oversampling' function on older scopes.

Reduces every block of n values to just the

first value in the block, discarding all the
other values.

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 43

3.19 ps2000aGetValuesAsync
Pl CO STATUS ps2000aGet Val uesAsync

(
intl6 t handl e,
uint32_t start | ndex,
ui nt 32_t noCf Sanpl es,
ui nt 32_t downSanpl eRat i o,
PS2000A RATI O MODE downSanpl eRat i ovbde,
uint16_t segnent | ndex,
voi d * | pDat aReady,
voi d * pPar anet er
)

This function returns data either with or without downsampling, starting at the
specified sample number. It is used to get the stored data from the scope after data
collection has stopped. It returns the data using a callback.

Applicability |Streaming mode and block mode

Arguments handl e, device identifier returned by ps2000aOpenUni t .

startl ndex, see ps2000aCet Val ues.

noCF Sanpl es, see ps2000aCet Val ues.
downSanpl eRati 0, see ps2000aGCet Val ues.
downSanpl eRat i oMbde, see ps2000aCet Val ues.
segnent | ndex, see ps2000aCet Val ues.

* | pDat aReady, a pointer to the user-supplied function that will be
called when the data is ready. This will be a ps2000aDat aReady
function for block-mode data or a ps2000aSt r eam ngReady function
for streaming-mode data.

* pParaneter, a void pointer that will be passed to the callback

function. The data type is determined by the application.
Returns PI CO_OK

Pl CO_| NVALI D_HANDLE

Pl CO_NO_SAMPLES_AVAI LABLE

Pl CO_DEVI CE_SAMPLI NG

Pl CO_NULL_PARAMETER

Pl CO_STARTI NDEX_| NVALI D

Pl CO_SEGVENT _OUT_OF RANGE

Pl CO_I NVALI D_PARAMETER

Pl CO_DATA_NOT_AVAI LABLE

PI CO_I NVALI D_SAVPLERATI O

Pl CO_| NVALI D_CALL

Pl CO_DRI VER_FUNCTI ON

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

44

API functions

3.20 ps2000aGetValuesBulk
Pl CO STATUS ps2000aGet Val uesBul k

-
intl6 t
uint32_t
uint16_t
uint16_t
uint32_t

handl e,

* noOf Sanpl es,
fronSegnent | ndex,
t oSegnent | ndex,
downSanpl eRat i o,

PS2000A RATI O MODE downSanpl eRat i ovbde,

intl6 t
)

* overfl ow

This function retrieves waveforms captured using rapid block mode. The waveforms
must have been collected sequentially and in the same run.

Applicability
Arguments

Returns

Rapid block mode

handl e, device identifier returned by ps2000a0OpenUni t .

* noOf Sanpl es, on entry, the number of samples required; on exit,
the actual number retrieved. The number of samples retrieved will
not be more than the number requested. The data retrieved always
starts with the first sample captured.

f ronBegnent | ndex, the first segment from which the waveform
should be retrieved.

t oSegnent | ndex, the last segment from which the waveform should
be retrieved.

downSanpl eRati 0, see ps2000aGet Val ues.
downSanpl eRat i oMode, see ps2000aCet Val ues.

* overflow, an array of integers equal to or larger than the number
of waveforms to be retrieved. Each segment index has a
corresponding entry in the over f| ow array, with overfl ow 0]
containing the flags for the segment numbered f r onSegnent | ndex
and the last element in the array containing the flags for the segment
numbered t oSegnment | ndex. Each element in the array is a bit field as
described under ps2000aGet Val ues.

Pl CO_OK

Pl CO_| NVALI D_HANDLE

Pl CO_| NVALI D_PARAVETER

Pl CO_I NVALI D_SAVPLERATI O
Pl CO_ETS_NOT_RUNNI NG

Pl CO_BUFFERS_NOT_SET

Pl CO_TOO_MANY_SANPLES

Pl CO_SEGVENT_OUT_OF RANGE
Pl CO_NO_SAMPLES_AVAI LABLE
Pl CO_NOT_RESPONDI NG

Pl CO_DRI VER_FUNCTI ON

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 45

3.21 ps2000aGetValuesOverlapped
Pl CO STATUS ps2000aGet Val uesOver | apped

(
intl6 t handl e,
uint32_t start | ndex,
ui nt 32_t * noOf Sanpl es,
ui nt 32_t downSanpl eRat i o,
PS2000A RATI O MODE downSanpl eRat i ovbde,
uint16_t segnent | ndex,
intl6 t * overfl ow

)

This function allows you to make a deferred data-collection request in block mode. The
request will be executed, and the arguments validated, when you call

ps2000aRunBl ock. The advantage of this function is that the driver makes contact with
the scope only once, when you call ps2000aRunBl ock, compared with the two contacts
that occur when you use the conventional ps2000aRunBIl ock, ps2000aGet Val ues
calling sequence. This slightly reduces the dead time between successive captures in
block mode.

After calling ps2000aRunBl ock, you can optionally use ps2000aGet Val ues to request
further copies of the data. This might be required if you wish to display the data with
different data reduction settings.

Applicability |Block mode
Arguments handl e, device identifier returned by ps2000a0OpenUni t .

startl ndex, see ps2000aCet Val ues

* noOf Sanpl es, on entry, the number of raw samples to be collected
before any downsampling is applied. On exit, the actual number
stored in the buffer. The number of samples retrieved will not be
more than the number requested, and the data retrieved starts at
startl ndex.

downSanpl eRati o, see ps2000aCet Val ues
downSanpl eRat i oMbde, see ps2000aCet Val ues
segnent | ndex, see ps2000aCet Val ues

* overflow, see ps2000aGetVal uesBul k
Returns PI CO_K

Pl CO_| NVALI D_HANDLE

Pl CO_I NVALI D_PARAMETER

Pl CO_DRI VER_FUNCTI ON

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

46

API functions

3.21.1 Using the GetValuesOverlapped functions

1.

2.

3.

10.

11.

Open the oscilloscope using ps2000aOpenUni t .

Select channel ranges and AC/DC coupling using ps2000aSet Channel .

Using ps2000aGet Ti nebase, select timebases until the required nanoseconds per
sample is located.

Use the trigger setup functions ps2000aSet Tr i gger Channel Di recti ons and
ps2000aSet Tri gger Channel Properti es to set up the trigger if required.

Wait until the oscilloscope is ready using the ps2000aBl ockReady callback (or
poll using ps2000al sReady).

Use ps2000aSet Dat aBuf f er to tell the driver where your memory buffer is.

Set up the transfer of the block of data from the oscilloscope using
ps2000aCet Val uesOver | apped.

Start the oscilloscope running using ps2000aRunBl ock.

Display the data.
Stop the oscilloscope.

Repeat steps 8 and 9 if needed.

A similar procedure can be used with rapid block mode using the
ps2000aCet Val uesOver | appedBul k function.

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 47

3.22 ps2000aGetValuesOverlappedBulk
Pl CO STATUS ps2000aCet Val uesOver | appedBul k

(
intl6 t handl e,
uint32_t start | ndex,
ui nt 32_t * noOf Sanpl es,
ui nt 32_t downSanpl eRat i o,
PS2000A RATI O MODE downSanpl eRat i ovbde,
uint16_t fronSegnent | ndex,
uint16_t t oSegnent | ndex,
intl6 t * overfl ow

)

This function allows you to make a deferred data-collection request, which will later be
executed, and the arguments validated, when you call ps2000aRunBl ock in rapid block
mode. The advantage of this method is that the driver makes contact with the scope
only once, when you call ps2000aRunBl ock, compared with the two contacts that occur
when you use the conventional ps2000aRunBl ock, ps2000aCet Val uesBul k calling
sequence. This slightly reduces the dead time between successive captures in rapid
block mode.

After calling ps2000aRunBlock, you can optionally use ps2000aGet Val ues to request
further copies of the data. This might be required if you wish to display the data with
different data reduction settings.

Applicability |Rapid block mode

Arguments handl e, device identifier returned by ps2000a0OpenUni t .

startl ndex, see ps2000aCet Val ues

* noOr Sanpl es, see ps2000aCet Val uesOver | apped
downSanpl eRati o, see ps2000aCet Val ues
downSanpl eRat i oMbde, see ps2000aCet Val ues
fronSegnent | ndex, see ps2000aGet Val uesBul k

t oSegnent | ndex, see ps2000aGet Val uesBul k

* overflow, see ps2000aGet Val uesBul k

Returns Pl CO_OK
Pl CO_I NVALI D_HANDLE

Pl CO_| NVALI D_PARAVETER
Pl CO_DRI VER_FUNCTI ON

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

48

API functions

3.23

ps2000aGetValuesTrigger TimeOffsetBulk
Pl CO STATUS ps2000aGCet Val uesTri gger Ti neCf f set Bul k

(
intl6 t handl e,
ui nt 32_t * timesUpper,
uint32_t * tinmesLower,
PS2000A_TI ME_UNITS * tinmeUnits,
uint16_t fronSegnent | ndex,
uint16_t t oSegnent | ndex

)

This function retrieves the time offsets, as lower and upper 32-bit values, for
waveforms obtained in rapid block mode. The time offset of a waveform is the delay
from the trigger sampling instant to the time at which the driver estimates the
waveform to have crossed the trigger threshold. You can add this offset to the time of
each sample in the waveform to reduce trigger jitter. Without using the time offset,
trigger jitter can be up to 1 sample period; adding the time offset reduces jitter to a
small fraction of a sample period.

This function is provided for use in programming environments that do not support 64-
bit integers. If your programming environment supports this data type, it is easier to
use ps2000aGet Val uesTri gger Ti mneX f set Bul k64.

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 49

Applicability
Arguments

Returns

Rapid block mode

handl e, device identifier returned by ps2000aCpenUni t .

* tinmesUpper, an array of integers. On exit, the most significant 32
bits of the time offset for each requested segment index. ti mes[0]
will hold the f r onSegnent | ndex time offset and the last ti mes index
will hold the t 0Segnent | ndex time offset. The array must be long
enough to hold the number of requested times.

* tinmesLower, an array of integers. On exit, the least significant 32
bits of the time offset for each requested segment index. ti mes[0]
will hold the f r onSegnent | ndex time offset and the last ti mes index
will hold the t 0Segnent | ndex time offset. The array size must be
long enough to hold the number of requested times.

* tineUnits, an array of integers. The array must be long enough to
hold the number of requested times. On exit, ti neUni t s[0] will
contain the time unit for f r onSegnent | ndex and the last element will
contain the time unit for t oSegnent | ndex. Refer to

ps2000aCet Tri gger Ti nef f set for allowable values.

f ronSegnent | ndex, the first segment for which the time offset is
required.

t oSegnent | ndex, the last segment for which the time offset is
required. If t oSegnent | ndex is less than f r onSegnent | ndex then the
driver will wrap around from the last segment to the first.

Pl CO_ OK

Pl CO_| NVALI D_HANDLE

Pl CO NOT_USED | N TH S_CAPTURE_MODE

Pl CO_NOT_RESPONDI NG

Pl CO_NULL_PARANVETER

Pl CO_DEVI CE_SAMPLI NG

Pl CO_SEGVENT _OUT _OF RANGE

Pl CO_NO_SAMPLES AVAI LABLE

Pl CO_DRI VER_FUNCTI ON

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

50 API functions

3.24 ps2000aGetValuesTriggerTimeOffsetBulk64
Pl CO STATUS ps2000aCet Val uesTri gger Ti neCf f set Bul k64

(
intl6 t handl e,
int64 t * tines,
PS2000A TIME UNITS * tineUnits,
uint16_t fronSegnent | ndex,
uint16_t t oSegnent | ndex
)
This function retrieves the 64-bit time offsets for waveforms captured in rapid block
mode.

A 32-bit version of this function, ps2000aCet Val uesTri gger Ti mef f set Bul k, is
available for use with programming languages that do not support 64-bit integers.

Applicability |Rapid block mode

Arguments handl e, device identifier returned by ps2000a0OpenUni t .

* tinmes, an array of integers. On exit, this will hold the time offset
for each requested segment index. ti mes[0] will hold the time offset
for f ronSegnent | ndex, and the last ti mes index will hold the time
offset for t oSegnent | ndex. The array must be long enough to hold
the number of times requested.

* tinmeUnits, an array of integers long enough to hold the number of
requested times. ti neUni t s[0] will contain the time unit for

f ronBegnent | ndex, and the last element will contain the

t oSegnent | ndex. Refer to ps2000aGet Tri gger Ti neOf f set 64 for
specific figures.

f ronBegnent | ndex, the first segment for which the time offset is
required. The results for this segment will be placed in ti nes[0] and
tinmeUnits[O0].

t oSegnent | ndex, the last segment for which the time offset is
required. The results for this segment will be placed in the last
elements of thetines and ti neUnits arrays. If t oSegnent | ndex is
less than f r onSegnent | ndex then the driver will wrap around from
the last segment to the first.

Returns PI CO_K
Pl CO_| NVALI D_HANDLE
Pl CO_ NOT_USED | N_TH S_CAPTURE_MODE
Pl CO_NOT_RESPONDI NG
Pl CO_NULL_PARAMETER
Pl CO_DEVI CE_SAMPLI NG
Pl CO_SEGVENT _OUT_OF RANGE
Pl CO_NO_SAMPLES AVAI LABLE
Pl CO_DRI VER_FUNCTI ON

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide

51

3.25 ps2000aHoldOff
Pl CO STATUS ps2000aHol dOF f

intl6 t handl e,
uint 64 _t hol dof f,
PS2000A HOLDOFF_TYPE type

)

This function has no effect and is reserved for future use.

Applicability |Not supported. Reserved for future use.
Arguments handl e, device identifier returned by ps2000a0OpenUni t .

hol dof f, reserved for future use.

t ype, reserved for future use.

Returns PI CO_K
Pl CO_I NVALI D_HANDLE

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

ps2000apg.en r9

52 API functions

3.26 ps2000alsReady
Pl CO STATUS ps2000al sReady

intl6 t handl e,
intle_t * ready
)

This function may be used instead of a callback function to receive data from
ps2000aRunBl ock. To use this method, pass a NULL pointer as the | pReady argument
to ps2000aRunBl ock. You must then poll the driver to see if it has finished collecting
the requested samples.

Applicability |Block mode
Arguments handl e, device identifier returned by ps2000a0OpenUni t .

* ready, output: indicates the state of the collection. If zero, the
device is still collecting. If non-zero, the device has finished collecting
and ps2000aCet Val ues can be used to retrieve the data.
Returns PI CO_K
Pl CO_| NVALI D_HANDLE
Pl CO_DRI VER_FUNCTI ON
Pl CO_NULL_PARAMETER
Pl CO_NO_SAMPLES_AVAI LABLE
Pl CO_CANCELLED
Pl CO_NOT_RESPONDI NG

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 53

3.27 ps2000alsTriggerOrPulseWidthQualifierEnabled
Pl CO STATUS ps2000al sTri gger Or Pul seW dt hQual i fi er Enabl ed

intl6 t handl e,
intl6_t * triggerEnabl ed,
intl6_t * pul seWdthQualifierEnabled

)

This function discovers whether a trigger, or pulse width triggering, is enabled.

Applicability |Call after setting up the trigger, and just before calling either
ps2000aRunBl ock or ps2000aRunsSt r eani ng.

Arguments handl e, device identifier returned by ps2000aCpenUni t .

* triggerEnabl ed, on exit, indicates whether the trigger will
successfully be set when ps2000aRunBl ock or ps2000aRunsSt r eani ng
is called. A non-zero value indicates that the trigger is set, zero that
the trigger is not set.

* pul seW dt hQual i fi er Enabl ed, on exit, indicates whether the
pulse width qualifier will successfully be set when ps2000aRunBI ock
or ps2000aRunSt r eani ng is called. A non-zero value indicates that
the pulse width qualifier is set, zero that the pulse width qualifier is
not set.

Returns Pl CO_OK

— Pl CO_| NVALI D_HANDLE
Pl CO_NULL_PARAVETER
Pl CO DRI VER_FUNCTI ON

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

54 API functions

3.28 ps2000aMaximumValue
Pl CO STATUS ps2000aMaxi munval ue

intl6 t handl e
intlé t * val ue

)

This function returns the maximum ADC count returned by calls to the "GetValues"
functions.

Applicability |All modes
Arguments handl e, device identifier returned by ps2000aCpenUni t .

* val ue, output: the maximum ADC value.
Returns PI CO K

Pl CO_USER_CALLBACK

Pl CO_| NVALI D_HANDLE

Pl CO_TOO MANY_ SEGVENTS

Pl CO_MEMORY

Pl CO_DRI VER_FUNCTI ON

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 55

3.29 ps2000aMemorySegments
Pl CO _STATUS ps2000aMenorySegnent s
intl6 t handl e
uint16_t nSegment s,

int32_t * nMaxSanpl es
)

This function sets the number of memory segments that the scope will use.

When the scope is opened, the number of segments defaults to 1, meaning that each
capture fills the scope's available memory. This function allows you to divide the
memory into a number of segments so that the scope can store several waveforms
sequentially.

Applicability |All modes

Arguments handl e, device identifier returned by ps2000aCpenUni t .

nSegnment s, the number of segments required, from 1 to 32.

* nMaxSanpl es, on exit, the number of samples available in each

segment. This is the total number over all channels, so if more than

one channel is in use then the number of samples available to each

channel is nMaxSanpl es divided by the number of channels.
Returns Pl CO_K

Pl CO_USER_CALLBACK

PI CO_I NVALI D_HANDLE

Pl CO_TOO MANY SEGVENTS

Pl CO_MEMORY

Pl CO DRI VER_FUNCTI ON

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

56 API functions

3.30 ps2000aMinimumValue
Pl CO STATUS ps2000aM ni munval ue

intl6 t handl e
intlé t * val ue

)

This function returns the minimum ADC count returned by calls to the Get Val ues
functions.

Applicability |All modes
Arguments handl e, device identifier returned by ps2000aCpenUni t .

* val ue, output: the minimum ADC value.
Returns PICO_OK

Pl CO_USER_CALLBACK

Pl CO_| NVALI D_HANDLE

Pl CO_TOO MANY_ SEGVENTS

Pl CO_MEMORY

Pl CO_DRI VER_FUNCTI ON

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 57

3.31 ps2000aNoOfStreamingValues
Pl CO STATUS ps2000aNoCrF St r eam ngVal ues

intl6 t handl e,
uint32_t * noO Val ues

)

This function returns the number of samples available after data collection in
streaming mode. Call it after calling ps2000aSt op.

Applicability |Streaming mode

Arguments handl e, device identifier returned by ps2000aOpenUni t .

* noCf Val ues, on exit, the number of samples.

Returns Pl CO_OK
PI CO_I NVALI D_HANDLE

Pl CO_NULL_PARAVETER

Pl CO_NO_SAMPLES_AVAI LABLE
Pl CO_NOT_USED

Pl CO_BUSY

Pl CO_DRI VER_FUNCTI ON

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

58 API functions

3.32 ps2000aOpenUnit
Pl CO STATUS ps2000aQOpenUni t

intl6_t * handl e,
int8 t * serial

)

This function opens a PicoScope 2000 Series (A API) scope attached to the computer.
The maximum number of units that can be opened depends on the operating system,
the kernel driver and the computer.

Applicability |All modes

Arguments * handl e, on exit, the result of the attempt to open a scope:
-1 : if the scope fails to open
0 : if no scope is found
> 0 : a number that uniquely identifies the scope
If a valid handle is returned, it must be used in all subsequent calls
to API functions to identify this scope.

* serial, on entry, a null-terminated string containing the serial
number of the scope to be opened. If serial is NULL then the
function opens the first scope found; otherwise, it tries to open the
scope that matches the string.
Returns PI CO_ K
Pl CO_OS_NOT_SUPPORTED
Pl CO_OPEN_OPERATI ON_I N_PROGRESS
Pl CO_EEPROM_CORRUPT
Pl CO_KERNEL_DRI VER TCO OLD
Pl CO_FPGA FAI L
Pl CO_MEMORY_CLOCK_FREQUENCY
Pl CO_FW FAI L
Pl CO_MAX_UNI TS_OPENED

PI CO_ NOT_FQOUND (if the specified unit was not found)
PI CO_NOT_RESPONDI NG

Pl CO_MEMORY_FAI L

Pl CO_ANALOG BOARD

Pl CO_CONFI G_FAI L_AWG

PI CO_I NI TI ALI SE_FPGA

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 59

3.33 ps2000aOpenUnitAsync
Pl CO STATUS ps2000aQCpenUni t Async

intlé t * status
int8 t * serial

)

This function opens a scope without blocking the calling thread. You can find out when

it has finished by periodically calling ps2000a0OpenUni t Pr ogr ess until that function
returns a non-zero value.

Applicability |All modes

Arguments * status, a status code:
0 if the open operation was disallowed because another open
operation is in progress.
1 if the open operation was successfully started.

* serial, seeps2000a0Cpenlnit.
Returns PI CO_OK

PI CO_OPEN_OPERATI ON_I N_PROGRESS
PI CO_OPERATI ON_FAI LED

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

60 API functions

3.34 ps2000aOpenUnitProgress
Pl CO STATUS ps2000aQOpenUni t Progr ess

intl6_t * handl e,
intl6_t * progressPercent,
intl6_t * conplete

)

This function checks on the progress of a request made to ps2000a0penUni t Async to
open a scope.

Applicability |Use after ps2000aQpenUni t Async

Arguments * handl e, see ps2000a0OpenUni t. This handle is valid only if the
function returns PI CO_OK.

* progressPercent, on exit, the percentage progress towards

opening the scope. 100% implies that the open operation is
complete.

* conpl ete, setto 1 when the open operation has finished.
Returns PI CO_OK

Pl CO_NULL_PARAMETER

Pl CO_OPERATI ON_FAI LED

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 61

3.35 ps2000aPingUnit
Pl CO STATUS ps2000aPi ngUni t

intl6 t handl e
)

This function can be used to check that the already opened device is still connected to
the USB port and communication is successful.

Applicability |All modes

Arguments handl e, device identifier returned by ps2000aOpenUni t .

Returns PI CO_X
PI CO_I NVALI D_HANDLE
Pl CO_DRI VER_FUNCTI ON
Pl CO_BUSY
PI CO_NOT_RESPONDI NG

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

62

API functions

3.36 ps2000aRunBlock
Pl CO STATUS ps2000aRunBl ock

-
intl1l6_t
int32 t
int32 t
uint32_t
intl6 t
int32 t
uint16_t

handl e,
noCf PreTri gger Sanpl es,
noCf Post Tri gger Sanpl es,
ti nebase,
over sanpl e,

* tinmelndi sposedMs,
segnent | ndex,

ps2000aBl ockReady | pReady,

voi d

)

* pPar anet er

This function starts collecting data in block mode. For a step-by-step guide to this
process, see Using block mode.

The number of samples is determined by noOf PreTri gger Sanpl es and
noCf Post Tri gger Sanpl es (see below for details). The total number of samples must
not be more than the size of the segment referred to by segnent | ndex.

Applicability
Arguments

Returns

Block mode, rapid block mode

handl e, device identifier returned by ps2000aCpenUni t .

noCf PreTri gger Sanpl es, the number of samples to store before the
trigger event.

noCf Post Tri gger Sanpl es, the number of samples to store after the
trigger event.

Note: the maximum number of samples returned is always
noCf PreTri gger Sanpl es + noOf Post Tri gger Sanpl es. This is
true even if no trigger event has been set.

ti mebase, a number in the range 0 to 232-1. See the guide to
calculating timebase values. This argument is ignored in ETS mode,
when ps2000aSet Et s selects the timebase instead.

over sanpl e, not used.

* tinelndi sposedMs, on exit, the time, in milliseconds, that the
scope will spend collecting samples. This does not include any auto
trigger timeout. It is not valid in ETS capture mode. The pointer can
be set to null if a value is not required.

segnent | ndex, zero-based, which memory segment to use.

| pReady, a pointer to the ps2000aBl ockReady callback function that
the driver will call when the data has been collected. To use the
ps2000al sReady polling method instead of a callback function, set
this pointer to NULL.

* pParaneter, a void pointer that is passed to the

ps2000aBl ockReady callback function. The callback can use this
pointer to return arbitrary data to the application.

Pl CO_OK

Pl CO BUFFERS_NOT_SET (in Overlapped mode)

PI CO_I NVALI D_HANDLE

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 63

PI CO_USER_CALLBACK

Pl CO_SEGVENT_OUT_OF RANGE

Pl CO_I NVALI D_CHANNEL

Pl CO_I NVALI D_TRI GGER_CHANNEL
Pl CO_I NVALI D_CONDI TI ON_CHANNEL
Pl CO_TOO_MANY_SAMPLES

Pl CO_I NVALI D_TI MEBASE

Pl CO_NOT_RESPONDI NG

Pl CO_CONFI G_FAI L

Pl CO_| NVALI D_PARAVETER

PI CO_NOT_RESPONDI NG

Pl CO_TRI GGER_ERROR

Pl CO_DRI VER_FUNCTI ON

Pl CO_FW FAI L

Pl CO NOT_ENOUGH_SEGMENTS (in Bulk mode)
Pl CO_PULSE_W DTH_QUALI FI ER

Pl CO SEGVENT_QUT_OF_RANGE (in Overlapped mode)
Pl CO_STARTI NDEX_| NVALI D (in Overlapped mode)

Pl CO_| NVALI D_SAMPLERATI O (in Overlapped mode)
Pl CO_CONFI G_FAI L

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

64

API functions

3.37 ps2000aRunStreaming
Pl CO STATUS ps2000aRunsStr eani ng

-
intl1l6_t
uint32_t

handl e,
* sanpl el nterval,

PS2000A TIME_UNITS sanplelnterval TimeUnits

uint32_t
uint32_t
intl6 t

ui nt 32_t

maxPr eTri gger Sanpl es,
maxPost Tr i gger Sanpl es,
aut oSt op,

downSanpl eRat i o,

PS2000A RATI O MODE downSanpl eRat i oMbde,

uint32_t
)

overvi ewBuf ferSi ze

This function tells the oscilloscope to start collecting data in streaming mode. When
data has been collected from the device it is downsampled if hecessary and then
delivered to the application. Call ps2000aGet St r eanm nglLat est Val ues to retrieve the
data. See Using streaming mode for a step-by-step guide to this process.

When a trigger is set, the total number of samples stored in the driver is the sum of
maxPreTri gger Sanpl es and maxPost Tri gger Sanpl es. If aut oSt op is false, this will
become the maximum number of samples without downsampling.

Applicability
Arguments

Returns

Streaming mode

handl e, device identifier returned by ps2000aOpenUni t .

* sanpl el nterval, on entry, the requested time interval between
samples; on exit, the actual time interval used.

sanpl el nterval Ti mreUni ts, the unit of time used for

sanpl el nt erval . Use one of these values:
PS2000A_FS
PS2000A_PS
PS2000A NS
PS2000A_US
PS2000A_MS
PS2000A_S

maxPreTri gger Sanpl es, the maximum number of raw samples
before a trigger event for each enabled channel. If no trigger
condition is set this argument is ignored.

maxPost Tri gger Sanpl es, the maximum number of raw samples
after a trigger event for each enabled channel. If no trigger condition
is set, this argument states the maximum number of samples to be
stored.

aut oSt op, a flag that specifies if the streaming should stop when all
of maxSanpl es have been captured.

downSanpl eRati 0, see ps2000aGet Val ues.
downSanpl eRat i oMbde, see ps2000aCet Val ues.

overvi ewBuf f er Si ze, the size of the overview buffers. These are
temporary buffers used for storing the data before returning it to the
application. The size is the same as the buffer Lt h value passed to
ps2000aSet Dat aBuf f er .

Pl CO_OK

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 65

PI CO_| NVALI D_HANDLE

Pl CO_ETS_MODE_SET

Pl CO_USER CALLBACK

Pl CO_NULL_PARAVETER

Pl CO_| N\VALI D_PARAVETER
Pl CO_STREAM NG_FAI LED
Pl CO_NOT_RESPONDI NG

Pl CO_TRI GGER_ERROR

Pl CO_I NVALI D_SAVPLE_| NTERVAL
Pl CO_I NVALI D_BUFFER

Pl CO_DRI VER_FUNCTI ON

Pl CO_FW FAI L

Pl CO_MEMORY

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

66

API functions

3.38 ps2000aSetChannel
Pl CO STATUS ps2000aSet Channel

(

intl6 t handl e,
PS2000A CHANNEL channel ,
intl6 t enabl ed,
PS2000A COUPLI NG type,
PS2000A RANGE range,

fl oat anal ogOf f set

)

This function specifies whether an input channel is to be enabled, its input coupling
type, voltage range, analog offset.

Applicability
Arguments

Returns

All modes
handl e, device identifier returned by ps2000aCpenUni t .

channel , the channel to be configured. The values are:
PS2000A CHANNEL_A: Channel A input
PS2000A CHANNEL_B: Channel B input
PS2000A CHANNEL_C. Channel C input
PS2000A CHANNEL _D: Channel D input

enabl ed, whether or not to enable the channel. The values are:
TRUE: enable
FALSE: do not enable

type, the impedance and coupling type. The values are:
PS2000A_AC: 1 megohm impedance, AC coupling. The channel
accepts input frequencies from about 1 hertz up
to its maximum analog bandwidth.
PS2000A_DC: 1 megohm impedance, DC coupling. The channel
accepts all input frequencies from zero (DC) up
to its maximum analog bandwidth.

range, the input voltage range:

PS2000A 20MV: £20 mV PS2000A 1V: #1V
PS2000A 50M: £50 mV PS2000A 2V: +2V
PS2000A_100MV: £100 mV PS2000A 5V: #5V
PS2000A_200MV: £200 mV PS2000A_10V: +10V
PS2000A_500MV: £500 mV PS2000A 20V: +20 V

anal ogOf f set, a voltage to add to the input channel before
digitization. The allowable range of offsets can be obtained from
ps2000aCet Anal ogue f set and depends on the input range

selected for the channel. This argument is ignored if the device is a
PicoScope 2205 MSO.

Pl CO_OK

Pl CO_USER_CALLBACK

Pl CO_I NVALI D_HANDLE

Pl CO_I NVALI D_CHANNEL

Pl CO_I NVALI D_VOLTAGE_RANGE

Pl CO_I NVALI D_COUPLI NG

Pl CO | NVALI D_ANALOGUE_OFFSET

Pl CO_DRI VER_FUNCTI ON

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 67

3.39 ps2000aSetDataBuffer
Pl CO STATUS ps2000aSet Dat aBuf f er

-
intl1l6_t
int32 t
intl6 t
int32 t
uint16_t

handl e,
channel ,

* puffer,
buf f er Lt h,
segnent | ndex,

PS2000A_RATI O MODE node

)

This function tells the driver where to store the data, either unprocessed or
downsampled, that will be returned after the next call to one of the GetValues
functions. The function allows you to specify only a single buffer, so for aggregation
mode, which requires two buffers, you need to call ps2000aSet Dat aBuf f er s instead.

You must allocate memory for the buffer before calling this function.

Applicability

Arguments

Returns

Block, rapid block and streaming modes. All downsampling modes
except aggregation.
handl e, device identifier returned by ps2000aCpenUni t .

channel , the channel you want to use with the buffer. Use one of
these values for analog channels:

PS2000A CHANNEL_A

PS2000A CHANNEL_B

PS2000A CHANNEL_C

PS2000A CHANNEL_D

To set the buffer for a digital port (MSO models only), use one of
these values:
PS2000A DI G TAL_PORTO
PS2000A DI G TAL_PORT1

0x80
0x81

* puffer, the location of the buffer.
buf f er Lt h, the size of the buffer array.

segnent | ndex, the number of the memory segment to be used.

node, the downsampling mode. See ps2000aGet Val ues for the
available modes, but note that a single call to ps2000aSet Dat aBuf f er
can only associate one buffer with one downsampling mode. If you
intend to call ps2000aCet Val ues with more than one downsampling
mode activated, then you must call ps2000aSet Dat aBuf f er several
times to associate a separate buffer with each downsampling mode.
Pl CO_OK

Pl CO_| NVALI D_HANDLE

Pl CO_| NVALI D_CHANNEL

Pl CO_RATI O MODE_NOT_SUPPORTED

Pl CO_SEGVENT OUT OF RANGE

Pl CO_DRI VER_FUNCTI ON

Pl CO_| NVALI D_PARAMETER

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

68 API functions

3.40 ps2000aSetDataBuffers

Pl CO STATUS ps2000aSet Dat aBuf fers
(

intl6 t handl e,

int32 t channel

intl6 t * puf f er Max,
intl6 t * pufferMn,
int32 t buf ferLth,
uint16_t segnent | ndex,
PS2000A RATI O MODE node

)

This function tells the driver the location of one or two buffers for receiving data. You
need to allocate memory for the buffers before calling this function. If you do not need
two buffers, because you are not using aggregate mode, you can optionally use
ps2000aSetDataBuffer instead.

Applicability |Block and streaming modes with aggregation.

Arguments handl e, device identifier returned by ps2000a0OpenUni t .

channel , the channel for which you want to set the buffers. Use one
of these constants:

PS2000A_ CHANNEL_A

PS2000A_CHANNEL_B

PS2000A CHANNEL_C

PS2000A_CHANNEL_D

To set the buffer for a digital port (MSO models only), use one of
these values:
PS2000A DI Gl TAL_PORTO
PS2000A DI Gl TAL_PORT1

0x80
0x81

* buf f er Max, a buffer to receive the maximum data values in
aggregation mode, or the non-aggregated values otherwise.

* bufferM n, a buffer to receive the minimum aggregated data
values. Not used in other downsampling modes.

buf f er Lt h, the size of the buf fer Max and bufferM n arrays.

segnent | ndex, the number of the memory segment to be used.

node, see ps2000aCet Val ues.

Returns Pl CO_OK
— Pl CO_| NVALI D_HANDLE

Pl CO_| NVALI D_CHANNEL

Pl CO_RATI O_MODE_NOT_SUPPORTED
Pl CO_SEGVENT _OUT_OF _RANGE

Pl CO_DRI VER_FUNCTI ON

Pl CO_| NVALI D_PARAVETER

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 69

3.41 ps2000aSetDigitalAnalogTriggerOperand
Pl CO STATUS ps2000aSet Di gi t al Anal ogTri gger Oper and
(

intl6 t handl e,
PS2000A _TRI GGER_OPERAND oper and

)

Mixed-signal (MSO) models in this series have two independent triggers, one for the
analog input channels and another for the digital inputs. This function defines how the
two triggers are combined.

Applicability |MSO models only

Arguments handl e, device identifier returned by ps2000aCpenUni t .

oper and, one of the following constants:
PS2000A_OPERAND_NONE, ignore the trigger settings
PS2000A OPERAND _OR, fire when either trigger is activated
PS2000A OPERAND_AND, fire when both triggers are activated
PS2000A OPERAND_THEN, fire when one trigger is activated
followed by the other

Returns PI CO_ K
PI CO_I NVALI D_HANDLE
Pl CO_DRI VER_FUNCTI ON
Pl CO_NOT_USED
Pl CO_I NVALI D_PARAMETER

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

70

API functions

3.42 ps2000aSetDigitalPort
Pl CO STATUS ps2000aSet Di gi t al Port

(
intl6 t handl e,
PS2000A DI G TAL_PORT port,
intl6 t enabl ed,
intl6_t | ogi cl evel
)

This function is used to enable the digital ports of an MSO and set the logic level (the

voltage point at which the state transitions from 0 to 1).

Applicability

Arguments

Returns

MSQO devices only.
Block and streaming modes with aggregation.
Not compatible with ETS mode.

handl e, device identifier returned by ps2000aCpenUni t .

port, the digital port to be configured:
PS2000A DI Gl TAL_PORTO = 0x80 (DO to D7)
PS2000A DI Gl TAL_PORT1 = 0x81 (D8 to D15)

enabl ed, whether or not to enable the channel. The values are:
TRUE: enable
FALSE: do not enable

| ogi cl evel, the logic threshold voltage.
Range: -32767 (-5 V) to 32767 (5 V).

Pl CO_OK

Pl CO_| NVALI D_HANDLE

Pl CO_| NVALI D_CHANNEL

Pl CO_RATI O MODE_NOT_SUPPORTED

Pl CO_SEGVENT OUT OF RANGE

Pl CO_DRI VER_FUNCTI ON

Pl CO_| NVALI D_PARAMETER

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 71

3.43 ps2000aSetEts

Pl CO STATUS ps2000aSet Et s
(

intl6 t handl e,
PS2000A_ETS MODE node,

intl6_t et sCycl es,

intl6 t etslnterl eave,

int32_t * sanpl eTi mePi coseconds

)

This function is used to enable or disable ETS (equivalent-time sampling) and to set
the ETS parameters. See ETS overview for an explanation of ETS mode.

Applicability |Block mode only.
On MSOs, ETS mode not available when digital port(s) enabled.
Arguments handl e, device identifier returned by ps2000a0OpenUni t .

node, the ETS mode. Use one of these values:

PS2000A ETS OFF: disables ETS

PS2000A ETS FAST: enables ETS and provides et sCycl es of
data, which may contain data from
previously returned cycles

PS2000A ETS SLOW enables ETS and provides fresh data
every et sCycl es. This mode takes
longer to provide each data set, but the
data sets are more stable and are
guaranteed to contain only new data.

et sCycl es, the number of cycles to store: the computer can then
select et sl nterl eave cycles to give the most uniform spread of
samples.
Range: between two and five times the value of et sl nt er | eave,
and not more than the appropriate MAX_ETS CYCLES constant:

500 for the PicoScope 2206B, 2206B MSO, 2207B, 2207B MSO,
2208B, 2208B MSO, 2405A, 2406B, 2407B, 2408B
PS2206_MAX_ETS_CYCLES for the PicoScope 2206, 2206A
PS2207_MAX_ETS_CYCLES for the PicoScope 2207, 2207A
PS2208_MAX_ETS_CYCLES for the PicoScope 2208, 2208A

etslnterl eave, the number of waveforms to combine into a single
ETS capture. Maximum value is:
40 for the PicoScope 2206B, 2206B MSO, 2207B, 2207B MSO,
2208B, 2208B MSO, 2405A, 2406B, 2407B, 2408B
PS2206_MAX_| NTERLEAVE for the PicoScope 2206, 2206A
PS2207_MAX_| NTERLEAVE for the PicoScope 2207, 2207A
PS2208_MAX_| NTERLEAVE for the PicoScope 2208, 2208A

* sanpl eTi mePi coseconds, on exit, the effective sampling interval
of the ETS data. For example, if the captured sample time is 4 ns
and etslnterl eave is 10, then the effective sample time in ETS
mode is 400 ps.

Returns PI CO_K
Pl CO_USER CALLBACK
Pl CO_| N\VALI D_HANDLE
Pl CO_| NVALI D_PARAMETER
Pl CO DRI VER_FUNCTI ON

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

72 API functions

3.44 ps2000aSetEtsTimeBuffer
Pl CO STATUS ps2000aSet Et sTi meBuf f er
intl6 t handl e,

inté4 t * buffer,
int32 t bufferLth

)

This function tells the driver where to find your application's ETS time buffers. These
buffers contain the 64-bit timing information for each ETS sample after you run a
block-mode ETS capture.

Applicability |ETS mode only.

If your programming language does not support 64-bit data, use the
32-bit version ps2000aSet Et sTi neBuf f er s instead.

Arguments handl e, device identifier returned by ps2000aCpenUni t .

* buffer, an array of 64-bit words, each representing the time in
femtoseconds (10715 s) at which the sample was captured.

buf f er Lt h, the size of the buffer array.

Returns Pl CO_OK
— Pl CO_| NVALI D_HANDLE

Pl CO_NULL_PARAMETER
PI CO_DRI VER_FUNCTI ON

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 73

3.45 ps2000aSetEtsTimeBuffers

Pl CO STATUS ps2000aSet Et sTi neBuf f ers

(
intl6 t handl e,

uint32_t * tinmeUpper,
uint32_t * tinelLower,
int32 t bufferLth

)

This function tells the driver where to find your application's ETS time buffers. These
buffers contain the timing information for each ETS sample after you run a block-mode
ETS capture. There are two buffers containing the upper and lower 32-bit parts of the
timing information, to allow programming languages that do not support 64-bit data to
retrieve the timings.

Applicability |ETS mode only.

If your programming language supports 64-bit data then you can use
ps2000aSet Et sTi neBuf f er instead.

Arguments handl e, device identifier returned by ps2000aCpenUni t .

* tineUpper, an array of 32-bit words, each representing the upper
32 bits of the time in femtoseconds (10-1% s) at which the sample was
captured.

* tineLower, an array of 32-bit words, each representing the lower
32 bits of the time in femtoseconds (1071% s) at which the sample was
captured.

buf ferLth, the size of theti neUpper andti neLower arrays.
Returns PICO (K

PI CO_| NVALI D_HANDLE

Pl CO_NULL_PARAMETER

PI CO_DRI VER_FUNCTI ON

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

74 API functions

3.46 ps2000aSetNoOfCaptures
Pl CO STATUS ps2000aSet NoOf Capt ur es

intl6 t handl e,
uint16_t nCapt ur es

)

This function sets the number of captures to be collected in one run of rapid block
mode. If you do not call this function before a run, the driver will capture only one
waveform. Once a value has been set, the value remains constant unless changed.

Applicability |Rapid block mode

Arguments handl e, device identifier returned by ps2000a0OpenUni t .

nCapt ures, the number of waveforms to capture in one run.

Returns Pl CO_K
Pl CO_I NVALI D_HANDLE

PI CO_I| NVALI D_PARAVETER
Pl CO_DRI VER_FUNCTI ON

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 75

3.47 ps2000aSetPulseWidthDigitalPortProperties
Pl CO_STATUS ps2000aSet Pul seW dt hDi gi t al Port Properties

intl6 t handl e,
PS2000A DI G TAL_CHANNEL_DI RECTI ONS * directions
intl6 t nDi rections

)

This function will set the individual digital channels' pulse-width trigger directions.
Each trigger direction consists of a channel name and a direction. If the channel is not
included in the array of PS2000A DI G TAL_CHANNEL DI RECTI ONS the driver assumes
the digital channel's pulse-width trigger direction is PS2000A DI Gl TAL_DONT_CARE.

Applicability |All modes.
MSO models only.

Arguments handl e, device identifier returned by ps2000aCpenUni t .

* directions, a pointerto an array of

PS2000A DI G TAL _CHANNEL DI RECTI ONS structures describing the
requested properties. The array can contain a single element
describing the properties of one channel, or a number of elements
describing several digital channels. If di recti ons is NULL, digital
pulse-width triggering is switched off. A digital channel that is not
included in the array will be set to PS2000A DI G TAL _DONT CARE.

nDi rections, the number of digital channel directions being passed
to the driver.
Returns Pl CO_OK
Pl CO_| NVALI D_HANDLE
Pl CO_DRI VER _FUNCTI ON
Pl CO_| NVALI D DI G TAL_CHANNEL
Pl CO | NVALI D DI G TAL_TRI GGER DI RECTI ON

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

76

API functions

3.48 ps2000aSetPulseWidthQualifier
Pl CO STATUS ps2000aSet Pul seW dt hQual i fi er

(
intl6 t handl e,
PS2000A PWQ CONDI TI ONS * conditions,
intl6 t nCondi ti ons,
PS2000A THRESHOLD DI RECTION direction,
uint32_t | ower,
ui nt 32_t upper,
PS2000A PULSE W DTH_TYPE type

)

This function sets up the conditions for pulse width qualification, which is used with
either threshold triggering, level triggering or window triggering to produce time-
qualified triggers.

Applicability
Arguments

All modes
handl e, device identifier returned by ps2000aCpenUni t .

* condi tions, an array of PS2000A PWQ CONDI Tl ONS structures
specifying the conditions that should be applied to each channel. In
the simplest case, the array consists of a single element. When there
are several elements, the overall trigger condition is the logical OR of
all the elements. Since each element can combine a number of input
conditions using AND logic, this AND-OR logic enables you to create a
qualifier based on any possible Boolean function of the inputs. If
condi tions is NULL then the pulse-width qualifier is not used.

nCondi ti ons, the number of elements in the condi ti ons array. If
nCondi ti ons is zero then the pulse-width qualifier is not used.
Range: 0 to PS2000A_ MAX_PULSE_W DTH_QUALI FI ER_COUNT.

direction, the direction of the signal required for the pulse width
trigger to fire. See PS2000A THRESHOLD DI RECTI ON constants for the
list of possible values. Each channel of the oscilloscope (except the
EXT input) has two thresholds for each direction—for example,
PS2000A RI SI NG and PS2000A RI SI NG LONER — so that one can be
used for the pulse-width qualifier and the other for the level trigger.
The driver will not let you use the same threshold for both triggers;
so, for example, you cannot use PS2000A RI SI NG as the directi on
argument for both ps2000aSet Tri gger Condi ti ons and

ps2000aSet Pul seW dt hQual i fi er at the same time. There is no such
restriction when using window triggers.

| oner, the lower limit of the pulse-width counter, measured in
sample periods.

upper, the upper limit of the pulse-width counter, measured in
sample periods. This parameter is used only when the t ype is set to
PS2000A_PW TYPE_| N_RANGE or PS2000A PW TYPE_OUT_OF RANGE.

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 77

type, the pulse-width type, one of these constants:
PS2000A PW TYPE_NONE: do not use the pulse width qualifier
PS2000A PW TYPE _LESS THAN: pulse width less than | ower
PS2000A PW TYPE_GREATER THAN: pulse width greater than | ower
PS2000A PW TYPE | N RANGE: pulse width between | ower and
upper
PS2000A_PW TYPE_OUT_OF_RANGE: pulse width not between | ower

and upper
Returns PI CO_OK
Pl CO_| NVALI D_HANDLE
Pl CO_USER_CALLBACK
Pl CO_CONDI TI ONS
Pl CO_ PULSE_W DTH_QUALI FI ER
Pl CO_DRI VER_FUNCTI ON

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

78 API functions

3.48.1 PS2000A_PWQ_CONDITIONS structure

A structure of this type is passed to ps2000aSet Pul seW dt hQual i fi er in the
condi ti ons argument to specify a set of trigger conditions. It is defined as follows:

typedef struct tPwgConditions
{

PS2000A TRI GGER_STATE channel A;
PS2000A TRI GGER_STATE channel B;
PS2000A TRI GGER_STATE channel C;
PS2000A TRI GGER_STATE channel D
PS2000A TRI GGER_STATE ext ernal ;
PS2000A_TRI GGER_STATE aux;
PS2000A_TRI GGER_STATE di gi tal ;
} PS2000A_PWQ CONDI TI ONS

The resulting trigger condition is the logical AND of the conditions applied to all the
inputs. An array of these structures can be passed to

ps2000aSet Pul seW dt hQual i fi er, which ORs them to produce the final pulse width
qualifier. This method can generate any possible Boolean function of the scope's input
conditions.

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

Elements channel A, channel B, channel C, channel D, external: the type of
condition that should be applied to each channel. Use these
constants:

PS2000A_CONDI TI ON_DONT_CARE
PS2000A_CONDI TI ON_TRUE
PS2000A_CONDI TI ON_FALSE

The channels that are set to PS2000A CONDI TI ON_TRUE or
PS2000A CONDI TI ON_FALSE must all meet their conditions
simultaneously to produce a trigger. Channels set to
PS2000A CONDI TI ON_DONT_CARE are ignored.

aux, digital: not used.

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 79

3.49 ps2000aSetSigGenArbitrary
Pl CO STATUS ps2000aSet Si gGenArbitrary

(
intl6 t handl e,
int32_t of f set Vol t age,
ui nt 32_t pkToPk
uint32_t st art Del t aPhase,
ui nt 32_t st opDel t aPhase,
uint32_t del t aPhasel ncr enent,
uint32_t dwel | Count,
intl6_t * arbitraryWaveform
int32_t ar bi traryWavef or nfSi ze,
PS2000A SWEEP_TYPE sweepType,
PS2000A EXTRA OPERATI ONS operation,
PS2000A | NDEX_ MODE i ndexMbde,
uint32_t shot s,
ui nt 32_t sweeps,
PS2000A_SI GGEN_TRI G_TYPE trigger Type,
PS2000A_SI GGEN_TRI G_SOURCE tri gger Source,
intl6 t ext I nThreshol d

)

This function programs the signal generator to produce an arbitrary waveform.

The arbitrary waveform generator uses direct digital synthesis (DDS). It maintains a
32-bit phase accumulator that indicates the present location in the waveform. The top
bits of the phase accumulator are used as an index into a buffer containing the
arbitrary waveform. The remaining bits act as the fractional part of the index, enabling
high-resolution control of output frequency and allowing the generation of lower
frequencies.

The phase accumulator initially increments by st art Del t aPhase. If the AWG is set to
sweep mode, the phase increment is increased at specified intervals until it reaches

st opDel t aPhase. The easiest way to obtain the values of st art Del t aPhase and

st opDel t aPhase necessary to generate the desired frequency is to call

ps2000aSi gGenFr equencyToPhase. Alternatively, see Calculating deltaPhase below for
more information on how to calculate these values.

Applicability |All modes
Arguments
handl e, device identifier returned by ps2000aCpenUni t.

of f set Vol t age, the voltage offset, in microvolts, to be applied to the waveform.
pkToPk, the peak-to-peak voltage, in microvolts, of the waveform signal.
start Del t aPhase, the initial value added to the phase accumulator as the generator

begins to step through the waveform buffer. Calculate this value from the information
above, or use ps2000aSi gGenFr equencyToPhase.

st opDel t aPhase, the final value added to the phase accumulator before the
generator restarts or reverses the sweep. When frequency sweeping is not required,
set equal to st art Del t aPhase.

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

80

API functions

del t aPhasel ncrenent, the amount added to the delta phase value every time the
dwel | Count period expires. This determines the amount by which the generator
sweeps the output frequency in each dwell period. When frequency sweeping is not
required, set to zero.

dwel | Count, the time, in multiples of ddsPeriod, between successive additions of
del t aPhasel ncrenent to the delta phase accumulator. This determines the rate at
which the generator sweeps the output frequency.

Minimum value: PS2000A M N_DWELL_COUNT

* arbitraryWavef orm a buffer that holds the waveform pattern as a set of samples
equally spaced in time. Each sample is scaled to an output voltage as follows:

Vour = 1 MV x (pkToPk / 2) x (sample_value / 32767) + of f set Vol t age

and clipped to the overall £2 V range of the AWG.

ar bi traryWavef or nSi ze, the size of the arbitrary waveform buffer, in samples, in
the range:

[m nArbitraryWavef ornSi ze, nmaxArbitraryWavef ornti ze]
where m nAr bi t raryWavef or nSi ze and maxAr bi trar yWavef or nSi ze are the
values returned by ps2000aSi gGenAr bi traryM nMaxVal ues.

sweepType, determines whether the st art Del t aPhase is swept up to the
st opDel t aPhase, or down to it, or repeatedly swept up and down. Use one of these

values:
PS2000A UP
PS2000A_DOWN
PS2000A_UPDOWN
PS2000A_DOWNUP

oper ation, the type of waveform to be produced, specified by one of the following
enumerated types:
PS2000A ES OFF, normal AWG operation using the waveform buffer.
PS2000A WHI TENO SE, the signal generator produces white noise and ignores all
settings except of f set Vol t age and pkToPk.
PS2000A PRBS, produces a random bitstream with a bit rate specified by the phase
accumulator.

i ndexMode, specifies how the signal will be formed from the arbitrary waveform
data. Single and dual index modes are possible. Use one of these constants:
PS2000A _SI NGLE
PS2000A_DUAL

shot s,
0: sweep the frequency as specified by sweeps
1...PS2000A MAX SWEEPS SHOTS: the number of cycles of the waveform to be
produced after a trigger event. sweeps must be zero.
PS2000A SHOT _SWEEP_TRI GGER_CONTI NUOUS_RUN: start and run continuously after
trigger occurs (not PicoScope 2205 MSO)

sweeps,
0: produce number of cycles specified by shot s
1.. PS2000A MAX SWEEPS SHOTS: the number of times to sweep the frequency after
a trigger event, according to sweepType. shots must be zero.

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide

81

PS2000A SHOT_SWEEP_ TRI GGER _CONTI NUOUS_RUN: start a sweep and continue after

trigger occurs (not PicoScope 2205 MSO)

trigger Type,

the type of trigger that will be applied to the signal generator:

PS2000A_SI GGEN_RI SI NG trigger on rising edge
PS2000A _SI GGEN_FALLI NG trigger on fa|||ng edge
PS2000A_SI GGEN_GATE_HI GH run while trigger is high
PS2000A_SI GGEN_GATE_LOW run while trigger is low
trigger Source, the source that will trigger the signal generator:
PS2000A_SI GGEN_NONE run without waiting for trigger
PSZOOOA_S| C{EEN_SCODE_TN G use scope trigger
PS2000A_SI GGEN_EXT_I N use EXT input (if available)
PS2000A_SI GGEN_SOFT_TRI G wait for software trigger provided by

ps2000aSi gGenSof t war eCont r ol

PS2000A_SI GCGEN_TRI GGER_RAW reserved

If a trigger source other than P2000A SI GGEN_NONE is specified, then either shot s

or sweeps, but not both, must be non-zero.

ext I nThreshol d, trigger level, in ADC counts, for external trigger.

Returns Pl CO_OK
— Pl CO_AWG NOT_SUPPORTED

Pl CO_BUSY
Pl CO_I NVALI D_HANDLE

Pl CO_SI G_GEN_PARAM

Pl CO_SHOTS_SWEEPS WARNI NG
Pl CO_NOT_RESPONDI NG

Pl CO_WARNI NG_EXT_THRESHOLD_CONFLI CT

Pl CO_NO_SI GNAL_GENERATOR
Pl CO_SI GGEN_OFFSET_VOLTAGE

PI CO_SI GGEN_PK_TO PK

PI CO_SI GGEN_OUTPUT_OVER VOLTAGE

PI CO_DRI VER_FUNCTI ON

Pl CO_SI GGEN_WAVEFORM SETUP_FAI LED

3.49.1 AWSG index modes

The arbitrary waveform generator supports single and dual index modes to help you

make the best use of the waveform buffer.

Single mode. The generator outputs the raw
contents of the buffer repeatedly. This mode is
the only one that can generate asymmetrical
waveforms. You can also use this mode for
symmetrical waveforms, but the dual and
quad modes make more efficient use of the
buffer memory.

<— Buffer —»

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

ps2000apg.en r9

82 API functions

Dual mode. The generator outputs the
contents of the buffer from beginning to end,
and then does a second pass in the reverse
direction through the buffer. This allows you
to specify only the first half of a waveform T i
with twofold symmetry, such as a Gaussian
function, and let the generator fill in the other
half.

<— Buffer —>

3.49.2 Calculating deltaPhase

The arbitrary waveform generator (AWG) steps through the waveform buffer by adding
a deltaPhase value between 1 and phaseAccumulatorSize-1 to the phase accumulator
every ddsPeriod (1 / ddsFrequency). If the deltaPhase is constant, the generator
produces a waveform at a constant frequency that can be calculated as follows:

deltaPhase \ x awgBufferSize \

outputFrequency = ddsFrequency x (phaseAccumuIatorSize} arbitraryWaveformSize /

Where:

® outputFrequency
® ddsFrequency
® deltaPhase

repetition rate of the complete arbitrary waveform
update rate of DDS counter for each model
calculated from st art Del t aPhase and

del t aPhasel ncr enment (we recommend that you use
ps2000aSi gGenFr equencyToPhase to calculate
deltaPhase)

232 for all models

AWG buffer size for each model

length in samples of the user-defined waveform

® phaseAccumulatorSize
® awgBufferSize
® arbitraryWaveformSize

It is also possible to sweep the frequency by continually modifying the deltaPhase.
This is done by setting up a del t aPhasel ncr enent that the oscilloscope adds to the
deltaPhase at intervals specified by dwel | Count .

Parameter PicoScope PicoScope PicoScope
2205 MSO 2205A MSO 2206B/2206B MSO
2206/2206A 2207B/2207B MSO
2207/2207A 2208B/2208B MSO
2208/2208A 2406B
2405A 2407B
2408B
phaseAccumulatorSize 232 232 232
ddsFrequency 48 MHz 20 MHz 20 MHz
awgBufferSize 8192 samples 8192 samples 32 768 samples
ddsPeriod (= 1/ 20.83 ns 50 ns 50 ns
ddsFrequency)

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide

83

3.50 ps2000aSetSigGenBuiltln

Pl CO STATUS ps2000aSet Si gGenBuiltln

-
intl1l6_t
int32 t
uint32_t
intl6 t
fl oat
fl oat
fl oat
fl oat
PS2000A SWEEP_TYPE
PS2000A EXTRA OPERATI ONS
uint32_t
uint32_t
PS2000A_SI GGEN_TRI G_TYPE
PS2000A_SI GGEN_TRI G_SOURCE
intl6 t
)

handl e,

of f set Vol t age,
pkToPk
waveType

st art Frequency,
st opFr equency,
i ncrement,
dwel | Ti ne,
sweepType,
operation,

shot s,

sweeps,
trigger Type,
trigger Sour ce,
ext I nThreshol d

This function sets up the signal generator to produce a signal from a list of built-in
waveforms. If different start and stop frequencies are specified, the device will sweep

either up, down, or up and down.

Applicability |All modes

Arguments

handl e, device identifier returned by ps2000aCpenUni t.

of f set Vol t age, the voltage offset, in microvolts, to be applied to the waveform.

pkToPk, the peak-to-peak voltage, in microvolts, of the waveform signal.

Note: if the signal voltages described by the combination of of f set Vol t age and
pkToPk extend outside the voltage range of the signal generator, the output waveform

will be clipped.

waveType, the type of waveform to be generated:

PS2000A_SI NE
PS2000A_SQUARE
PS2000A_TRI ANGLE
PS2000A_DC_VOLTAGE
PS2000A_RAMP_UP
PS2000A_RAMP_DOWN
PS2000A_SI NC
PS2000A_GAUSSI AN
PS2000A_HALF_SI NE

sine wave

square wave

triangle wave

DC voltage

rising sawtooth

falling sawtooth

sin(x)/x

Gaussian

half (full-wave rectified) sine

start Frequency, the frequency that the signal generator will initially produce.
Allowable values are between one of these constants:

PS2000A_M N_FREQUENCY
PS2000A_PRBS_M N_FREQUENCY

and one of these constants:

PS2000A_SI NE_MAX_FREQUENCY
PS2000A_SQUARE_MAX_FREQUENCY

PS2000A TRI ANGLE_MAX_FREQUENCY

PS2000A_SI NC_MAX_FREQUENCY

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

ps2000apg.en r9

84

API functions

PS2000A_RAMP_NMAX_FREQUENCY
PS2000A_HALF_SI NE_MAX_FREQUENCY
PS2000A_GAUSSI AN_MAX_FREQUENCY
PS2000A_PRBS_MAX_FREQUENCY

depending on the signal type.

st opFr equency, the frequency at which the sweep reverses direction or returns to
the initial frequency.

i ncrement, the amount of frequency increase or decrease in sweep mode.
dwel | Ti me, the time for which the sweep stays at each frequency, in seconds.

sweepType, whether the frequency will sweep from st art Frequency to
st opFr equency, or in the opposite direction, or repeatedly reverse direction. Use one
of these constants:

PS2000A_UP

PS2000A DOWN

PS2000A _UPDOWN

PS2000A DOWNUP

operation, the type of waveform to be produced, specified by one of the following
enumerated types:
PS2000A ES COFF, normal signal generator operation specified by waveType.
PS2000A WHI TENO SE, the signal generator produces white noise and ignores all
settings except pkToPk and of f set Vol t age.
PS2000A PRBS, produces a random bitstream with a bit rate specified by the start
and stop frequency (not available on PicoScope 2205 MSQO).

shots, see ps2000aSi gGenArbitrary.

sweeps, see ps2000aSi gGenArbitrary.
triggerType, see ps2000aSi gGenArbitrary.
trigger Source, see ps2000aSi gGenArbitrary.

ext I nThreshol d, see ps2000aSi gGenArbitrary.
Returns PI CO_OK
Pl CO_BUSY
Pl CO_| NVALI D_HANDLE
Pl CO_SI G_GEN_PARAM
Pl CO_ SHOTS SWEEPS WARNI NG
Pl CO_NOT_RESPONDI NG
Pl CO_ WARNI NG_AUX_OUTPUT_CONFLI CT
Pl CO WARNI NG_EXT_THRESHOLD CONFLI CT
Pl CO_NO_SI GNAL_GENERATOR
Pl CO_SI GGEN_OFFSET_VOLTAGE
PI CO_SI GGEN_PK_TO PK
Pl CO_SI GGEN_OQUTPUT_OVER VOLTAGE
Pl CO DRI VER_FUNCTI ON
Pl CO_SI GGEN_WAVEFORM SETUP_FAI LED
Pl CO_NOT_RESPONDI NG

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide

85

3.51 ps2000SetSigGenBuiltinV2
Pl CO_STATUS ps2000aSet Si gGenBui | t I nV2

(
intl6 t handl e,
int32_t of f set Vol t age,
ui nt 32_t pkToPk
intl6_t waveType
doubl e start Frequency,
doubl e st opFr equency,
doubl e i ncrenent,
doubl e dwel | Ti ne,
PS2000_SWEEP_TYPE sweepType,
PS2000_EXTRA OPERATI ONS operation,
uint32_t shot s,
ui nt 32_t sweeps,
PS2000_SI GGEN_TRI G_TYPE trigger Type,
PS2000_SI GGEN_TRI G_SOURCE trigger Sour ce,
intl6 t ext I nThreshol d
)

This function sets up the signal generator. It differs from ps2000Set Si gGenBuiltln in
having double-precision arguments instead of floats, giving greater resolution when

setting the output frequency.

Applicability |All modes
Arguments See ps2000Set Si gGenBui I t1n
Returns See ps2000Set Si gGenBui I t1n

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

ps2000apg.en r9

86

API functions

3.52 ps2000aSetSigGenPropertiesArbitrary
Pl CO STATUS ps2000aSet Si gGenProperti esArbitrary

(

)

intl6 t handl e,

uint32_t st art Del t aPhase,

ui nt 32_t st opDel t aPhase,
uint32_t del t aPhasel ncrenent,
uint32_t dwel | Count ,

PS2000A SWEEP_TYPE sweepType,

uint32_t shot s,

ui nt 32_t sweeps,

PS2000A_SI GGEN_TRI G_TYPE
PS2000A_SI GGEN_TRI G_SOURCE

intl6 t

trigger Type,
trigger Sour ce,

ext I nThreshol d

This function reprograms the arbitrary waveform generator. All values can be
reprogrammed while the signal generator is waiting for a trigger.

Applicability

Arguments

Returns

All modes

See ps2000Set Si gGenArbitrary

Pl CO X if successful
PI CO_| NVALI D_HANDLE
Pl CO_NO S| GNAL GENERATOR
PI CO_DRI VER_FUNCTI ON
CO_AWG NOT_SUPPORTED
PI CO_S
Cco S
PI CO_S

Pl CO_SI G_GEN_PARAM
Pl CO_SHOTS_SWEEPS WARNI NG

|
| GGEN_PK_TO _PK
|

GCGEN_OFFSET_VOLTAGE

GGEN_OUTPUT_OVER_VOLTAGE

Pl CO_WARNI NG_EXT_THRESHOLD_CONFLI CT

Pl CO_BUSY

Pl CO_SI GGEN_WAVEFORM SETUP_FAI LED

Pl CO_NOT_RESPONDI NG

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 87

3.53 ps2000aSetSigGenPropertiesBuiltin
Pl CO STATUS ps2000aSet Si gGenPropertiesBuiltln

(
intl6 t handl e,
doubl e start Frequency,
doubl e st opFr equency,
doubl e i ncrement,
doubl e dwel | Ti ne,
PS2000A SWEEP_TYPE sweepType,
uint32_t shot s,
ui nt 32_t sweeps,

PS2000A_SI GGEN_TRI G_TYPE trigger Type,
PS2000A_SI GGEN_TRI G_SOURCE tri gger Source,
intl6 t ext I nThreshol d

)

This function reprograms the signal generator. Values can be changed while the signal
generator is waiting for a trigger.

Applicability |All modes
Arguments See ps2000Set Si gGenBui I t1n

Returns Pl CO X if successful
PI CO_| NVALI D_HANDLE
Pl CO_NO S| GNAL GENERATOR
PI CO_DRI VER_FUNCTI ON
Pl CO WARNI NG _EXT_THRESHOLD CONFLI CT
Pl CO_SI GGEN _OFFSET VOLTAGE
Pl CO_SI GGEN_PK_TO PK
Pl CO_SI GGEN_OUTPUT _OVER VOLTAGE
Pl CO_SI G GEN _PARAM
Pl CO_SHOTS SWEEPS WARNI NG
Pl CO WARNI NG _EXT_THRESHOLD CONFLI CT
Pl CO_BUSY
Pl CO_SI GGEN_WAVEFORM SETUP_FAI LED
Pl CO_NOT_RESPONDI NG

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

88 API functions

3.54 ps2000aSetSimpleTrigger
Pl CO STATUS ps2000aSet Si npl eTri gger

(
intl6 t handl e,
intl6 t enabl e,
PS2000A CHANNEL source,
intl6 t t hreshol d,
PS2000A THRESHOLD DI RECTI ON di recti on,
ui nt 32_t del ay,
intl6_t aut oTri gger _ns
)

This function simplifies arming the trigger. It supports only the LEVEL trigger types
and does not allow more than one channel to have a trigger applied to it. Any previous
pulse width qualifier is canceled.

Applicability |All modes

Arguments handl e, device identifier returned by ps2000aOpenUni t .

enabl e, zero to disable the trigger, any non-zero value to set the
trigger.

sour ce, the channel on which to trigger.
t hr eshol d, the ADC count at which the trigger will fire.

di rection, the direction in which the signal must move to cause a
trigger. The following directions are supported: ABOVE, BELOW
RI SI NG, FALLI NGand RI SI NG OR_FALLI NG.

del ay, the time between the trigger occurring and the first sample
being taken. For example, if del ay=100 then the scope would wait
100 sample periods before sampling.

aut oTri gger _ns, the number of milliseconds the device will wait if
no trigger occurs. If this is set to zero, the scope device will wait
indefinitely for a trigger.
Returns PI CO_ K
Pl CO_I NVALI D_CHANNEL
Pl CO_| NVALI D_PARAMETER
Pl CO_MENORY
Pl CO_CONDI Tl ONS
Pl CO_I NVALI D_HANDLE
Pl CO_USER_CALLBACK
Pl CO_DRI VER_FUNCTI ON

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 89

3.55 ps2000aSetTriggerChannelConditions
Pl CO STATUS ps2000aSet Tri gger Channel Condi ti ons
(

intl6 t handl e,
PS2000A TRI GGER_CONDI TI ONS * condi ti ons,
intl6 t nCondi ti ons

)

This function sets up trigger conditions on the scope's inputs. The trigger is defined by
one or more PS2000A_TRI GGER_CONDI TI ONS structures that are then ORed together.
Each structure is itself the AND of the states of one or more of the inputs. This AND-
OR logic allows you to create any possible Boolean function of the scope's inputs.

If complex triggering is not required, use ps2000aSet Si npl eTri gger .

Applicability |All modes
Arguments handl e, device identifier returned by ps2000a0OpenUni t .

* conditions, an array of PS2000A TRI GGER CONDI Tl ONS structures
specifying the conditions that should be applied to each channel. In
the simplest case, the array consists of a single element. When there
is more than one element, the overall trigger condition is the logical
OR of all the elements.

nCondi ti ons, the number of elements in the condi ti ons array. If
nCondi ti ons is zero then triggering is switched off.
Returns Pl CO_CK
Pl CO_I NVALI D_HANDLE
Pl CO_USER_CALLBACK
Pl CO_CONDI Tl ONS
Pl CO_MENORY
Pl CO_DRI VER_FUNCTI ON

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

90 API functions

3.55.1 PS2000A_TRIGGER_CONDITIONS structure

A structure of this type is passed to ps2000aSet Tri gger Channel Condi ti ons in the
condi ti ons argument to specify the trigger conditions, and is defined as follows:

typedef struct tTriggerConditions

PS2000A TRI GGER_STATE channel A;
PS2000A TRI GGER_STATE channel B;
PS2000A TRI GGER_STATE channel C;
PS2000A TRI GGER_STATE channel D
PS2000A TRI GGER_STATE ext ernal ;
PS2000A_TRI GGER_STATE aux;
PS2000A TRI GGER_STATE pul seW dt hQual i fier;
PS2000A_TRI GGER_STATE di gi tal ;

} PS2000A_TRI GGER_CONDI TI ONS

Each structure is the logical AND of the states of the scope's inputs. The

ps2000aSet Tri gger Channel Condi ti ons function can OR together a number of these
structures to produce the final trigger condition, which can be any possible Boolean
function of the scope's inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

Elements channel A, channel B, channel C, channel D, external,
pul seW dt hQualifier: the type of condition that should be applied

to each channel. Use these constants:
PS2000A_CONDI TI ON_DONT_CARE
PS2000A_CONDI TI ON_TRUE
PS2000A_CONDI TI ON_FALSE

The channels that are set to PS2000A CONDI TI ON_TRUE or
PS2000A CONDI TI ON_FALSE must all meet their conditions
simultaneously to produce a trigger. Channels set to
PS2000A CONDI TI ON_DONT_CARE are ignored.

aux, digital: not used.

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide

91

3.56 ps2000aSetTriggerChannelDirections

Pl CO STATUS ps2000aSet Tri gger Channel Di recti ons

(
intl6 t handl e,

PS2000A_THRESHCOLD DI RECTI ON channel A,
PS2000A_THRESHOLD DI RECTI ON channel B,
PS2000A_THRESHOLD DI RECTI ON channel C,
PS2000A_THRESHOLD DI RECTI ON channel D,
PS2000A_THRESHOLD_ DI RECTI ON ext ,
PS2000A_THRESHOLD_ DI RECTI ON aux

)

This function sets the direction of the trigger for each channel.

Applicability |All modes

Arguments handl e, device identifier returned by ps2000a0OpenUni t .

channel A, channel B, ext, the direction in which the signal must
pass through the threshold to activate the trigger. See the table
below for allowable values. If using a level trigger in conjunction with
a pulse-width trigger, see the description of the di recti on argument
to ps2000aSet Pul seW dt hQual i fi er for more information.

channel C, channel D, aux: not used.

Returns Pl CO_OK
- Pl CO_| NVALI D_HANDLE

Pl CO_USER_CALLBACK
Pl CO_| N\VALI D_PARAVETER

PS2000A_THRESHOLD_DI RECTI ON constants

Constant Trigger type
PS2000A_ABOVE gated

PS2000A_ ABOVE_LOVWER gated

PS2000A BELOW gated

PS2000A BELOW LOVER gated
PS2000A RI SI NG threshold
PS2000A RI SI NG_LOVER threshold
PS2000A FALLI NG threshold
PS2000A FALLI NG_LOVER threshold
PS2000A_RI SI NG_OR_FALLI NG threshold
PS2000A | NSI DE window-qualified
PS2000A OUTSI DE window-qualified
PS2000A_ENTER window
PS2000A EXIT window

PS2000A ENTER OR EXI T window

PS2000A NONE none

Direction

above the upper threshold

above the lower threshold

below the upper threshold

below the lower threshold

rising edge, using upper threshold
rising edge, using lower threshold
falling edge, using upper threshold
falling edge, using lower threshold
either edge

inside window

outside window

entering the window

leaving the window

entering or leaving the window
none

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

ps2000apg.en r9

92 API functions

3.57 ps2000aSetTriggerChannelProperties
Pl CO STATUS ps2000aSet Tri gger Channel Properties

(
intl6 t handl e,
PS2000A TRI GGER_CHANNEL _PROPERTI ES * channel Properti es,
intl6_t nChannel Properti es,
intl6_t auxCQut put Enabl e,
int32_t aut oTriggerM I 1iseconds
)

This function is used to enable or disable triggering and set its parameters.

Applicability |All modes
Arguments handl e, device identifier returned by ps2000aOpenUni t .

* channel Properties, a pointer to an array of

PS2000A TRI GGER CHANNEL PROPERTI ES structures describing the
requested properties. The array can contain a single element
describing the properties of one channel, or a number of elements
describing several channels. If NULL is passed, triggering is switched
off.

nChannel Properties, the size of the channel Properties array. If
zero, triggering is switched off.

auxQut put Enabl e, not used.

aut oTriggerM | liseconds, the time in milliseconds for which the
scope device will wait before collecting data if no trigger event occurs.
If this is set to zero, the scope device will wait indefinitely for a
trigger.
Returns PI CO_OK
Pl CO_| NVALI D_HANDLE
Pl CO_USER_CALLBACK
Pl CO_TRI GGER_ERROR
Pl CO_MENMORY
Pl CO_| NVALI D_TRI GGER_PROPERTY
Pl CO_DRI VER_FUNCTI ON
Pl CO_I NVALI D_PARAVMETER

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 93

3.57.1 PS2000A_TRIGGER_CHANNEL_PROPERTIES structure

A structure of this type is passed to ps2000aSet Tri gger Channel Properti es in the
channel Properties argument to specify the trigger mechanism, and is defined as
follows:

typedef struct tTriggerChannel Properties

intl6_ t t hr eshol dUpper ;

uint16 t t hr eshol dUpper Hyst eresi s;
intl6_t t hr eshol dLower ;

ui nt 16_t t hr eshol dLower Hyst er esi s;
PS2000A CHANNEL channel ;

PS2000A_THRESHOLD MODE t hr eshol dMode;
} PS2000A TRI GGER_CHANNEL_PROPERTI ES

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

Upper and lower thresholds

The digital triggering hardware in your PicoScope has two independent trigger
thresholds called upper and lower. For some trigger types you can freely choose which
threshold to use. The table in ps2000aSet Tri gger Channel Di r ecti ons shows which
thresholds are available for use with which trigger types. Dual thresholds are used for
pulse-width triggering, when one threshold applies to the level trigger and the other to
the pulse-width gqualifier; and for window triggering, when the two thresholds define
the upper and lower limits of the window.

Each threshold has its own trigger and hysteresis settings.

Hysteresis

Each trigger threshold (upper and lower) has an accompanying parameter called
hysteresis. This defines a second threshold at a small offset from the main threshold.
The trigger fires when the signal crosses the trigger threshold, but will not fire again
until the signal has crossed the hysteresis threshold and then returned to cross the
trigger threshold. The double-threshold mechanism prevents noise on the signal from
causing unwanted trigger events.

For a rising-edge trigger the hysteresis threshold is below the trigger threshold. After
one trigger event, the signal must fall below the hysteresis threshold before the trigger
is enabled for the next event. Conversely, for a falling-edge trigger, the hysteresis
threshold is always above the trigger threshold. After a trigger event, the signal must
rise above the hysteresis threshold before the trigger is enabled for the next event.

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

94

API functions

Elements

Hysteresis — The
trigger fires at A as
the signal rises past
the trigger threshold.
l— It does not fire at B
because the signal
- - «—thresholdUpper has not yet dipped
- below the hysteresis
T threshold. The
thresholdUpperHysteresis ~ trigger fires again at
C after the signal has
dipped below the
hysteresis threshold
and risen again past
the trigger threshold.

t hr eshol dUpper, the upper threshold at which the trigger fires. This
is scaled in 16-bit ADC counts at the currently selected range for that
channel.

t hr eshol dUpper Hyst er esi s, the distance between the upper trigger
threshold and the upper hysteresis threshold, scaled in 16-bit counts.

t hr eshol dLower, threshol dLower Hyst er esi s, the settings for the
lower threshold: see t hr eshol dUpper and
t hr eshol dUpper Hyst eresi s.

channel , the channel to which the properties apply. This can be one
of the four input channels listed under ps2000aSet Channel , or
PS2000A TRI GGER_EXT for the Ext input fitted to some models.

t hr eshol dMbde, either a level or window trigger. Use one of these
constants:

PS2000A LEVEL

PS2000A_ W NDOW

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 95

3.58 ps2000aSetTriggerDelay
Pl CO STATUS ps2000aSet Tri gger Del ay
(

intl6 t handl e,
ui nt 32_t del ay

)

This function sets the post-trigger delay, which causes capture to start a defined time
after the trigger event.

Applicability |All modes (but del ay is ignored in streaming mode)
Arguments handl e, device identifier returned by ps2000aOpenUni t .

del ay, the time between the trigger occurring and the first sample.
For example, if del ay=100 then the scope would wait 100 sample

periods before sampling. At a timebase of 1 GS/s, or 1 ns per sample,
the total delay would then be 100 x 1 ns = 100 ns.

Range: 0 to MAX_DELAY_COUNT
Returns PI CO_ K

Pl CO_I NVALI D_HANDLE

Pl CO_USER_CALLBACK

Pl CO_DRI VER_FUNCTI ON

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

96 API functions

3.59 ps2000aSetTriggerDigitalPortProperties
Pl CO STATUS ps2000aSet Tri gger Di gi t al Port Properties

intl6 t handl e,
PS2000A DI G TAL_CHANNEL_DI RECTI ONS * directions,
intl6 t nDi rections

)

This function will set the individual Digital channels trigger directions. Each trigger
direction consists of a channel name and a direction. If the channel is not included in
the array of PS2000A DI G TAL_CHANNEL DI RECTI ONS the driver assumes the digital
channel's trigger direction is PS2000A DI Gl TAL_DONT_CARE.

Applicability |All modes
Arguments handl e, device identifier returned by ps2000a0OpenUni t .

* directions, a pointerto an array of

PS2000A DI G TAL_CHANNEL DI RECTI ONS structures describing the
requested properties. The array can contain a single element
describing the properties of one channel, or a number of elements
describing several digital channels. If di recti ons is NULL, digital
triggering is switched off. A digital channel that is not included in the
array will be set to PS2000A DI G TAL_DONT_CARE.

nDi rections, the number of digital channel directions being passed
to the driver.
Returns PI CO_K
Pl CO_| NVALI D_HANDLE
Pl CO_DRI VER_FUNCTI ON
Pl CO_| NVALI D_DI G TAL_CHANNEL
Pl CO_| NVALI D_DI G TAL_TRI GGER_DI RECTI ON

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 97

3.59.1 PS2000A_DIGITAL_CHANNEL_DIRECTIONS structure

A structure of this type is passed to ps2000aSet Tri gger Di gi t al Port Properties in
the di recti ons argument to specify the trigger mechanism, and is defined as follows:

pragnma pack(1)
typedef struct tPS2000AD gital Channel Directions

PS2000A DI G TAL_CHANNEL channel ;

PS2000A DI G TAL_DI RECTI ON di recti on;
} PS2000A DI G TAL_CHANNEL_DI RECTI ONS;
#pragma pack()

typedef enum enPS2000ADi gi t al Channel
{

PS2000A DI G TAL_CHANNEL_0,
PS2000A DI Gl TAL_CHANNEL_1,

PS2000A DI Gl TAL_CHANNEL_2,

PS2000A DI Gl TAL_CHANNEL_3,

PS2000A DI Gl TAL_CHANNEL_4,

PS2000A DI Gl TAL_CHANNEL_5,

PS2000A DI Gl TAL_CHANNEL_6,

PS2000A DI Gl TAL_CHANNEL_7,

PS2000A DI Gl TAL_CHANNEL_8,

PS2000A DI Gl TAL_CHANNEL_9,

PS2000A DI Gl TAL_CHANNEL_10,
PS2000A DI Gl TAL_CHANNEL_11,
PS2000A DI Gl TAL_CHANNEL_12,
PS2000A DI Gl TAL_CHANNEL_13,
PS2000A DI Gl TAL_CHANNEL_14,
PS2000A DI Gl TAL_CHANNEL_15,
PS2000A DI Gl TAL_CHANNEL_16,
PS2000A DI Gl TAL_CHANNEL_17,
PS2000A DI Gl TAL_CHANNEL_18,
PS2000A DI Gl TAL_CHANNEL_19,
PS2000A DI Gl TAL_CHANNEL_20,
PS2000A DI Gl TAL_CHANNEL_21,
PS2000A DI Gl TAL_CHANNEL_22,
PS2000A DI Gl TAL_CHANNEL_23,
PS2000A DI Gl TAL_CHANNEL_24,
PS2000A DI Gl TAL_CHANNEL_25,
PS2000A DI Gl TAL_CHANNEL_26,
PS2000A DI Gl TAL_CHANNEL_27,
PS2000A DI Gl TAL_CHANNEL_28,
PS2000A DI Gl TAL_CHANNEL_29,
PS2000A DI Gl TAL_CHANNEL_30,
PS2000A DI Gl TAL_CHANNEL_31,

PS2000A_MAX_DI Gl TAL_CHANNELS
} PS2000A DI Gl TAL_CHANNEL;

typedef enum enPS2000ADi gi tal Di rection
{

PS2000A_DI Gl TAL_DONT_CARE,
PS2000A_DI G TAL_DI RECTI ON_LOW

PS2000A_DI G TAL_DI RECTI ON_HI GH,

PS2000A_DI G TAL_DI RECTI ON_RI SI NG,

PS2000A DI Gl TAL_DI RECTI ON_FALLI NG,

PS2000A_DI G TAL_DI RECTI ON_RI SI NG OR_FALLI NG,

PS2000A_DI G TAL_MAX_DI RECTI ON
} PS2000A_DI G TAL_DI RECTI ON,

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

98

API functions

3.60 ps2000aSigGenArbitraryMinMaxValues
Pl CO STATUS ps2000aSi gGenAr bi t raryM nMaxVal ues

-
intl1l6_t
intl6 t
intl6 t
uint32_t
uint32_t

)

EE

handl e,

m nAr bi t rar yWavef or nival ue,
maxAr bi t r ar yWavef or nival ue,
m nAr bi traryWavef or nSi ze,
maxAr bi t rar yWavef or nSi ze

This function returns the range of possible sample values and waveform buffer sizes
that can be supplied to ps2000aSet Si gGenAr bi trary for setting up the arbitrary
waveform generator (AWG). These values may vary between models.

Applicability
Arguments

Returns

All models with AWG
handl e, device identifier returned by ps2000aCpenUni t .

m nAr bi t r ar yWavef or nval ue, on exit, the lowest sample value
allowed in the ar bi t r ar yWavef or m buffer supplied to
ps2000aSet Si gGenArbitrary.

mexAr bi t r ar yWavef or nival ue, on exit, the highest sample value
allowed in the ar bi t r ar yWavef or m buffer supplied to
ps2000aSet Si gGenArbitrary.

m nAr bi t rar yWavef or nSi ze, on exit, the minimum value allowed for
the ar bi t rar yWavef or n5i ze argument supplied to
ps2000aSet Si gGenArbitrary.

maxAr bi t r ar yWavef or nSi ze, on exit, the maximum value allowed
for the ar bi t rar yWavef or nSi ze argument supplied to

ps2000aSet Si gGenArbitrary.

Pl CO_OK

Pl CO_ NOT_SUPPORTED BY THI S DEVI CE, if the device does not have
an arbitrary waveform generator.

Pl CO NULL_PARAMETER, if all the parameter pointers are NULL.
Pl CO_| NVALI D_HANDLE
Pl CO_DRI VER_FUNCTI ON

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 99

3.61 ps2000aSigGenFrequencyToPhase
Pl CO STATUS ps2000aSi gGenFr equencyToPhase

(
intl6 t handl e,
doubl e frequency,
PS3000A_| NDEX_MODE i ndexMode,
ui nt 32_t buf f er Lengt h,
ui nt 32_t * phase

)

This function converts a frequency to a phase count for use with the arbitrary
waveform generator setup functions ps2000aSet Si gGenArbi trary and

ps2000aSet Si gGenProperti esArbitrary. The value returned depends on the length
of the buffer, the index mode passed and the device model.

Applicability |All models with AWG
Arguments handl e, device identifier returned by ps2000aCpenUni t.

frequency, the required AWG output frequency.

i ndexMbde, see AWG index modes.

buf f er Lengt h, the number of samples in the AWG buffer.

phase, on exit, the del t aPhase argument to be sent to the AWG
setup function

Returns PI CO_K
Pl CO_ NOT_SUPPORTED BY_ THI S DEVI CE, if the device does not have
an AWG.
Pl CO_SI GGEN_FREQUENCY_ QUT_COF RANGE, if the frequency is out of
range.

Pl CO NULL_PARAMETER, if phase is a NULL pointer.

Pl CO_SI G_GEN_PARAM if i ndexMbde or buf f er Lengt h is out of range.
Pl CO_| NVALI D_HANDLE

Pl CO_DRI VER_FUNCTI ON

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

100 API functions

3.62 ps2000aSigGenSoftwareControl
Pl CO STATUS ps2000aSi gGenSof t war eCont r ol

intl6 t handl e,
intl6 t state

)

This function causes a trigger event, or starts and stops gating. Use it as follows:

1. Call ps2000aSet Si gGenBui I t1 n or ps2000aSet Si gGenArbi trary to set up the
signal generator, setting the tri gger Sour ce argument to SI GGEN_SOFT_TRI G.

2. (a) If you set the signal generator tri gger Type to edge triggering
(PS2000A_SI GGEN_RI SI NG or PS2000A_SI GGEN_FALLI NG), call
ps2000aSi gGensSof t war eCont r ol once to trigger a capture.
(b) If you set the signal generator t ri gger Type to gated triggering
(PS2000A_SI GGEN_GATE_HI GH or PS2000A_SI GGEN_GATE_LOW), call
ps2000aSi gGenSof t war eCont r ol with state set to 0 to start capture, and then
again with st at e set to 1 to stop capture.

Applicability |Use with ps2000aSet Si gGenBuiltln or
ps2000aSet Si gGenArbitrary.

Arguments handl e, device identifier returned by ps2000aOpenUni t .

st at e, specifies whether to start or stop capture. Effective only
when the signal generator t ri gger Type is set to S| GGEN_GATE_HI GH
or SI GGEN_GATE_LOW Ignored for other trigger types.

0: to start capture
<> 0: to stop capture
Returns Pl CO_ K

Pl CO_I NVALI D_HANDLE

Pl CO_NO_SI GNAL_GENERATOR
Pl CO_SI GGEN_TRI GGER_SOURCE
PI CO_DRI VER_FUNCTI ON

PI CO_NOT_RESPONDI NG

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 101

3.63 ps2000aStop
Pl CO_STATUS ps2000aSt op
(

intl6_t handle
)

This function stops the scope device from sampling data. If this function is called
before a trigger event occurs, the oscilloscope may not contain valid data.

Always call this function after the end of a capture to ensure that the scope is ready
for the next capture.

Applicability |All modes
Arguments handl e, device identifier returned by ps2000aCpenUni t .

Returns PI CO_X
PI CO_I NVALI D_HANDLE
Pl CO_USER_CALLBACK
Pl CO_DRI VER_FUNCTI ON

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

102

API functions

3.64 ps2000aStreamingReady

typedef void
(

intl6 t
int32 t
uint32_t
intl6 t
uint32_t
intl6 t
intl6 t

voi d *

)

(CALLBACK *ps2000aSt r eani ngReady)

handl e,

noCf Sanpl es,
startl ndex,
overfl ow,
triggerAt,
triggered,
aut oSt op,
pPar anet er

This callback function is part of your application. You register it with the driver using
ps2000aCet St r eam nglat est Val ues, and the driver calls it back when streaming-

mode data is ready. You can then download the data using the
ps2000aCet Val uesAsync function.

The function should do nothing more than copy the data to another buffer within your

application. To m

aintain the best application performance, the function should return

as quickly as possible without attempting to process or display the data.

Applicability
Arguments

Returns

Streaming mode only

handl e, device identifier returned by ps2000aCpenUni t .

noCf Sanpl es, the number of samples to collect.

startlndex, an index to the first valid sample in the buffer. This is
the buffer that was previously passed to ps2000aSet Dat aBuf f er .

over fl ow, returns a set of flags that indicate whether an
overvoltage has occurred on any of the channels. It is a bit pattern
with bit 0 denoting Channel A.

triggerAt, an index to the buffer indicating the location of the
trigger point relative to st art | ndex. The trigger point is therefore at
Startlndex + triggerAt. This parameter is valid only when
triggered is non-zero.

triggered, a flag indicating whether a trigger occurred. If non-zero,
a trigger occurred at the location indicated by tri gger At.

aut oSt op, the flag that was set in the call to ps2000aRunSt r eani ng.

* pParaneter, a void pointer passed from

ps2000aCet St r eam nglat est Val ues. The callback function can write
to this location to send any data, such as a status flag, back to the
application.

nothing

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 103

3.65

Wrapper functions

The Software Development Kits (SDKs) for PicoScope devices contain wrapper dynamic
link library (DLL) files in the | i b subdirectory of your SDK installation for 32-bit and
64-bit systems. The wrapper functions provided by the wrapper DLLs are for use with
programming languages such as MathWorks MATLAB, National Instruments LabVIEW
and Microsoft Excel VBA that do not support features of the C programming language
such as callback functions.

The source code contained in the W apper projects contains a description of the
functions and the input and output parameters.

Below we explain the sequence of calls required to capture data in streaming mode
using the wrapper API functions.

The ps2000aW ap. dl | wrapper DLL has a callback function for streaming data
collection that copies data from the driver buffer specified to a temporary application
buffer of the same size. To do this it must be registered with the wrapper and the
channel must be specified as being enabled. You should process the data in the
temporary application buffer accordingly, for example by copying the data into a large
array.

Procedure:
1. Open the oscilloscope using ps2000a0OpenUni t .

la. Inform the wrapper of the number of channels on the device by calling
set Channel Count .

2. Select channels, ranges and AC/DC coupling using ps2000aSet Channel .

2a. Inform the wrapper which channels have been enabled by calling
set Enabl edChannel s.

3. [MSOs only] Set the digital port using ps2000aSet Di gi t al Port .

3a. [MSOs only] Inform the wrapper which digital ports have been enabled by calling
set Enabl edDi gi t al Ports.

4. Use the appropriate trigger setup functions. For programming languages that do not
support structures, use the wrapper's advanced trigger setup functions.

5. [MSOs only] Use the trigger setup function
ps2000aSet Tri gger Di gi t al Port Properti es to set up the digital trigger if required.

6. Call ps2000aSet Dat aBuf f er (or for aggregated data collection
ps2000aSet Dat aBuf f er s) to tell the driver where your data buffer(s) is(are).

6a. Register the data buffer(s) with the wrapper and set the application buffer(s) into
which the data will be copied.

For analog channels: Call set AppAndDri ver Buffers (or
set MaxM nAppAndDri ver Buf f er s for aggregated data collection).

[MSOs Only] For digital ports: Call set AppAndDri ver Di gi Buffers (or
set MaxM nAppAndDri ver Di gi Buf f er s for aggregated data collection).

7. Start the oscilloscope running using ps2000aRunSt r eani ng.

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

104 API functions

8. Loop and call Get Stream nglLat est Val ues and | sReady to get data and flag when
the wrapper is ready for data to be retrieved.

8a. Call the wrapper’s Avai | abl eDat a function to obtain information on the number of
samples collected and the start index in the buffer.

8b. Call the wrapper’s | sTri gger Ready function for information on whether a trigger
has occurred and the trigger index relative to the start index in the buffer.

9. Process data returned to your application data buffers.

10. Call Aut oSt opped if the aut oSt op parameter has been set to TRUE in the call to
ps2000aRunsSt r eam ng.

11. Repeat steps 8 to 10 until Aut oSt opped returns true or you wish to stop data
collection.

12. Call ps2000aSt op, even if the aut oSt op parameter was set to TRUE.

13. To disconnect a device, call ps2000ad oselni t .

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 105

4

4.1

4.2

4.3

4.4

Further information

Programming examples

Your SDK installation includes programming examples in a selection of languages and
development environments. Please refer to the SDK for details.

Driver status codes

Every function in the ps2000a driver returns a driver status code from the list of
Pl CO_STATUS values in Pi coSt at us. h, which is included in the i nc folder of the Pico
Technology SDK.

Enumerated types and constants

Enumerated types and constants are defined in ps2000aApi . h, which is included in the
SDK under the i nc folder. We recommend that you refer to these constants by name
unless your programming language allows only numerical values.

Numeric data types
Here is a list of the numeric data types used in the PicoScope 2000 Series A API:

Type Bits Signed or unsigned?
int8_t 8 signed

int16_t 16 signed

uint16_t 16 unsigned

enum 32 enumerated

int32_t 32 signed

ui nt 32_t 32 unsigned

fl oat 32 signed (IEEE 754 binary32)
doubl e 64 signed (IEEE 754 binary64)
int64_t 64 signed

ui nt 64_t 64 unsigned

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

106 Glossary

5 Glossary

AC/DC control. Each channel can be set to either AC coupling or DC coupling. With
DC coupling, the voltage displayed on the screen is equal to the true voltage of the
signal. With AC coupling, any DC component of the signal is filtered out, leaving only
the variations in the signal (the AC component).

Aggregation. This is the data-reduction method used by the PicoScope 2000 Series
(A API) scopes. For each block of consecutive samples, the scope transmits only the
minimum and maximum samples over the USB port to the PC. You can set the number
of samples in each block, called the aggregation parameter, when you call
ps2000aRunSt r eam ng for real-time capture, and when you call

ps2000aCet St r eam nglat est Val ues to obtain post-processed data.

Aliasing. An effect that can cause digital oscilloscopes to display fast-moving
waveforms incorrectly, by showing spurious low-frequency signals ("aliases") that do
not exist in the input. To avoid this problem, choose a sampling rate that is at least
twice the highest frequency in the input signal.

Analog bandwidth. All oscilloscopes have an upper limit to the range of frequencies
at which they can measure accurately. The analog bandwidth of an oscilloscope is
defined as the frequency at which a displayed sine wave has half the power of the
input sine wave (or, equivalently, about 71% of the amplitude).

Block mode. A sampling mode in which the computer prompts the oscilloscope to
collect a block of data into its internal memory before stopping the oscilloscope and
transferring the whole block into computer memory. This mode of operation is
effective when the input signal being sampled contains high frequencies. Note: To
avoid aliasing effects, the maximum input frequency must be less than half the
sampling rate.

Buffer size. The size, in samples, of the oscilloscope buffer memory. The buffer
memory is used by the oscilloscope to temporarily store data before transferring it to
the PC.

ETS. Equivalent Time Sampling. ETS constructs a picture of a repetitive signal by
accumulating information over many similar wave cycles. This means the oscilloscope
can capture fast-repeating signals that have a higher frequency than the maximum
sampling rate. Note: ETS cannot be used for one-shot or non-repetitive signals.

External trigger. This is the BNC socket marked EXT on the oscilloscope. It can be
used to start a data collection run but cannot be used to record data.

Maximum sampling rate. A figure indicating the maximum number of samples the
oscilloscope is capable of acquiring per second. Maximum sample rates are given in
MS/s (megasamples per second) or GS/s (gigasamples per second). The higher the
sampling capability of the oscilloscope, the more accurate the representation of the
high frequencies in a fast signal.

MSO (mixed-signal oscilloscope). An oscilloscope that has both analog and digital
inputs.

Overvoltage. Any input voltage to the oscilloscope must not exceed the overvoltage
limit, measured with respect to ground, otherwise the oscilloscope may be
permanently damaged.

ps2000apg.en r9 Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide 107

PC Oscilloscope. A measuring instrument consisting of a Pico Technology scope
device and the PicoScope software. It provides all the functions of a bench-top
oscilloscope without the cost of a display, hard disk, network adapter and other
components that your PC already has.

PicoScope software. This is a software product that accompanies all our
oscilloscopes. It turns your PC into an oscilloscope, spectrum analyzer.

Signal generator. This is a feature of some oscilloscopes which allows a signal to be
generated without an external input device being present. The signal generator output
is the BNC socket marked Awg or Gen on the oscilloscope. If you connect a BNC cable
between this and one of the channel inputs, you can send a signal into one of the
channels. It can generate a sine, square, triangle or arbitrary wave of fixed or swept
frequency.

Streaming mode. A sampling mode in which the oscilloscope samples data and
returns it to the computer in an unbroken stream. This mode of operation is effective
when the input signal being sampled contains only low frequencies.

Timebase. The timebase controls the time interval across the scope display. There are
ten divisions across the screen and the timebase is specified in units of time per
division, so the total time interval is ten times the timebase.

USB 1.1. An early version of the Universal Serial Bus standard found on older PCs.
Although your PicoScope will work with a USB 1.1 port, it will operate much more
slowly than with a USB 2.0 or 3.0 port.

USB 2.0. Universal Serial Bus (High Speed). A standard port used to connect external
devices to PCs. The high-speed data connection provided by a USB 2.0 port enables
your PicoScope to achieve its maximum performance.

USB 3.0. A faster version of the Universal Serial Bus standard. Your PicoScope is fully
compatible with USB 3.0 ports and will operate with the same performance as on a
USB 2.0 port.

Vertical resolution. A value, in bits, indicating the degree of precision with which the
oscilloscope can turn input voltages into digital values. Calculation techniques can
improve the effective resolution.

Voltage range. The voltage range is the difference between the maximum and
minimum voltages that can be accurately captured by the oscilloscope.

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved. ps2000apg.en r9

Technology

PicoScope 2000 Series (A API) Programmer's Guide

109

Index

A

Access 3

ADC count 54, 56

Aggregation 17

Aliasing 106

Analog bandwidth 106

Analog offset 29, 66

Arbitrary waveform generator 79, 81

B

Bandwidth limiter 66
Block mode 6, 7, 8,9, 106
asynchronous call 9

callback 24

polling status 52

running 62
Buffer size 106

C

Callback 7, 15
block mode 24
for data 26
streaming mode 102
Channels
enabling 66
settings 66
Closing units 25
Common-mode voltage 106
Communication 61
Connection 61
Constants 105
Copyright 3
Coupling 106
Coupling type, setting 66

D

Data acquisition 17
Data buffers

declaring 67

declaring, aggregation mode 68
Data retention 8
deltaPhase argument (AWG) 82
Digital inputs

connector 21

data format 6

portsO0Oandl1 6
Downsampling 8, 41

maximum ratio 31

modes 42
Driver 4

status codes 105

E

Enabling channels 66
Enumerated types 105
Enumerating oscilloscopes 27
ETS

mode 7

overview 15

setting time buffers 72, 73

settingup 71

using 16

F

Fitness for purpose 3

Functions
list of 22
ps2000aBlockReady 24
ps2000aCloseUnit 25
ps2000aDataReady 26
ps2000aEnumerateUnits 27
ps2000aFlashLed 28
ps2000aGetAnalogueOffset 29
ps2000aGetChannellnformation 30
ps2000aGetMaxDownSampleRatio 31
ps2000aGetMaxSegments 32
ps2000aGetNoOfCaptures 33, 34
ps2000aGetStreamingLatestValues 35
ps2000aGetTimebase 20, 36
ps2000aGetTimebase2 37
ps2000aGetTriggerTimeOffset 38
ps2000aGetTriggerTimeOffset64 39
ps2000aGetUnitinfo 40
ps2000aGetValues 9, 41
ps2000aGetValuesAsync 9, 43
ps2000aGetValuesBulk 44
ps2000aGetValuesOverlapped 45
ps2000aGetValuesOverlappedBulk 47
ps2000aGetValuesTriggerTimeOffsetBulk 48

ps2000aGetValuesTriggerTimeOffsetBulk64
50, 51

ps2000alsReady 52

ps2000alsTriggerOrPulseWidthQualifierEnabled
53

ps2000aMaximumValue 5, 54

ps2000aMemorySegments 55

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

ps2000apg.en r9

Information, reading from units 40
Input range, selecting 66
Intended use 1

L

LED
flashing 28
Legal information 3

110 Index
Functions Liability 3
ps2000aMinimumValue 5, 56
ps2000aNoOfStreamingValues 57 M
ps2000a0OpenUnit 58
ps2000a0OpenUnitAsync 59 Memory buffer 8
ps2000a0OpenUnitProgress 60 Memory segmentation 8,9, 17, 55
ps2000aPingUnit 61 Mission-critical applications 3
ps2000aRunBlock 62 Multi-unit operation 21
ps2000aRunStreaming 64
ps2000aSetChannel 5, 66 N
ps2000aSetDataBuffer 67 Numeric data types 105
ps2000aSetDataBuffers 68
ps2000aSetDigitalAnalogTriggerOperand 69 O
ps2000aSetEts 15, 71
ps2000aSetEtsTimeBuffer 72 One-shot signals 15
ps2000aSetEtsTimeBuffers 73 Opening a unit 58
ps2000aSetNoOfCaptures 74 checking progress 60
ps2000aSetPulseWidthDigitalPortProperties without blocking 59
75 Oversampling 42
ps2000aSetPulseWidthQualifier 76
ps2000aSetSigGenArbitrary 79 P
ps2000aSetSigGenBuiltIn 83
ps2000aSetSigGenPropertiesArbitrary 86 PC Oscilloscope 1, 106
ps2000aSetSigGenPropertiesBuiltIn 87 PC requirements 2
ps2000aSetSimpleTrigger 6, 88 PICO_STATUS enum type 105
ps2000aSetTriggerChannelConditions 6, 89 PicoScope 2000 Series 1
ps2000aSetTriggerChannelDirections 6, 91 PicoScope software 1, 4, 105, 106
ps2000aSetTriggerChannelProperties 6, 92 Programming
ps2000aSetTriggerDelay 95 general procedure 4
ps2000aSetTriggerDigitalPortProperties 96 ps2000a.dll 4
ps2000aSigGenSoftwareControl 100 PS2000A_CONDITION_ constants 78, 90
ps2000aStop 9, 101 PS2000A_LEVEL constant 93, 97
ps2000aStreamingReady 102 PS2000A_PWQ_CONDITIONS structure 78
ps2000SetSigGenBuiltInvV2 85 PS2000A_RATIO_MODE_AGGREGATE 42
PS2000A_RATIO_MODE_AVERAGE 42
H PS2000A_RATIO_MODE_DECIMATE 42
PS2000A_TIME_UNITS constant 38, 39
Hysteresis 93, 97 PS2000A_TRIGGER_CHANNEL_PROPERTIES
structure 93, 97
| PS2000A_TRIGGER_CONDITIONS 89
PS2000A_TRIGGER_CONDITIONS structure 90
Index modes PS2000A_WINDOW constant 93, 97
dual 81 ps2000aSigGenArbitraryMinMaxValues 98
single 81

ps2000aSigGenFrequencyToPhase 99
Pulse-width qualifier 76

conditions 78

requesting status 53

R

Ranges 30
Rapid block mode
aggregation 13

7,10, 10, 33, 34

ps2000apg.en r9

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

PicoScope 2000 Series (A API) Programmer's Guide

111

Rapid block mode 7, 10, 10, 33, 34
no aggregation 11
setting number of captures 74
Resolution, vertical 106
Retrieving data 41, 43
block mode, deferred 45
rapid block mode 44
rapid block mode, deferred 47
stored 19
streaming mode 35
Retrieving times
rapid block mode 48, 50, 51

S

Sampling rate 106
maximum 8

Scaling 5

Serial numbers 27

Setup time 8

Signal generator
arbitrary waveforms 79
built-in waveforms 83, 85
software trigger 100

Status codes 105

Stopping sampling 101

Streaming mode 7, 17, 106
callback 102
getting number of samples 57
retrieving data 35
running 64
using 18

Support 3

T

Time buffers
setting for ETS 72,73
Timebase 20, 106
calculating 36, 37
Trademarks 3
Trigger
channel properties 75, 92, 96
combining analog and digital 69
conditions 89, 90
delay 95
digital port pulse width 75
digital ports 96
directions 91
external 5
pulse-width qualifier 76
pulse-width qualifier conditions 78

requesting status 53
settingup 88
stability 15
threshold 6

time offset 38, 39

U

Upgrades 3

Usage 3

USB 1,2, 4,106
hub 21

\

Viruses 3
Voltage range 5, 106
selecting 66

W

WinUsb.sys 4
Wrapper functions 103

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

ps2000apg.en r9

United Kingdom Headquarters

Pico Technology

James House

Colmworth Business Park
St. Neots
Cambridgeshire

PE19 8YP

United Kingdom

Tel: +44 (0) 1480 396 395
Fax: +44 (0) 1480 396 296

sales@picotech.com
support@picotech.com

www.picotech.com

ps2000apg.en r9 2016-03-09

United States Headquarters

Pico Technology

320 N Glenwood Blvd
Tyler

Texas 75702

United States

Tel: +1 800 591 2796
Fax: +1 620 272 0981

Copyright © 2011-2016 Pico Technology Ltd. All rights reserved.

	Introduction
	Overview
	PC requirements
	Legal information

	Concepts
	Driver
	System requirements
	General procedure
	Voltage ranges
	MSO digital data
	Triggering
	Sampling modes
	Block mode
	Using block mode
	Asynchronous calls in block mode

	Rapid block mode
	Using rapid block mode
	Rapid block mode example 1: no aggregation
	Rapid block mode example 2: using aggregation

	ETS (Equivalent Time Sampling)
	Using ETS mode

	Streaming mode
	Using streaming mode

	Retrieving stored data

	Timebases
	MSO digital connector diagram
	Combining several oscilloscopes

	API functions
	ps2000aBlockReady
	ps2000aCloseUnit
	ps2000aDataReady
	ps2000aEnumerateUnits
	ps2000aFlashLed
	ps2000aGetAnalogueOffset
	ps2000aGetChannelInformation
	ps2000aGetMaxDownSampleRatio
	ps2000aGetMaxSegments
	ps2000aGetNoOfCaptures
	ps2000aGetNoOfProcessedCaptures
	ps2000aGetStreamingLatestValues
	ps2000aGetTimebase
	ps2000aGetTimebase2
	ps2000aGetTriggerTimeOffset
	ps2000aGetTriggerTimeOffset64
	ps2000aGetUnitInfo
	ps2000aGetValues
	Downsampling modes

	ps2000aGetValuesAsync
	ps2000aGetValuesBulk
	ps2000aGetValuesOverlapped
	Using the GetValuesOverlapped functions

	ps2000aGetValuesOverlappedBulk
	ps2000aGetValuesTriggerTimeOffsetBulk
	ps2000aGetValuesTriggerTimeOffsetBulk64
	ps2000aHoldOff
	ps2000aIsReady
	ps2000aIsTriggerOrPulseWidthQualifierEnabled
	ps2000aMaximumValue
	ps2000aMemorySegments
	ps2000aMinimumValue
	ps2000aNoOfStreamingValues
	ps2000aOpenUnit
	ps2000aOpenUnitAsync
	ps2000aOpenUnitProgress
	ps2000aPingUnit
	ps2000aRunBlock
	ps2000aRunStreaming
	ps2000aSetChannel
	ps2000aSetDataBuffer
	ps2000aSetDataBuffers
	ps2000aSetDigitalAnalogTriggerOperand
	ps2000aSetDigitalPort
	ps2000aSetEts
	ps2000aSetEtsTimeBuffer
	ps2000aSetEtsTimeBuffers
	ps2000aSetNoOfCaptures
	ps2000aSetPulseWidthDigitalPortProperties
	ps2000aSetPulseWidthQualifier
	PS2000A_PWQ_CONDITIONS structure

	ps2000aSetSigGenArbitrary
	AWG index modes
	Calculating deltaPhase

	ps2000aSetSigGenBuiltIn
	ps2000SetSigGenBuiltInV2
	ps2000aSetSigGenPropertiesArbitrary
	ps2000aSetSigGenPropertiesBuiltIn
	ps2000aSetSimpleTrigger
	ps2000aSetTriggerChannelConditions
	PS2000A_TRIGGER_CONDITIONS structure

	ps2000aSetTriggerChannelDirections
	ps2000aSetTriggerChannelProperties
	PS2000A_TRIGGER_CHANNEL_PROPERTIES structure

	ps2000aSetTriggerDelay
	ps2000aSetTriggerDigitalPortProperties
	PS2000A_DIGITAL_CHANNEL_DIRECTIONS structure

	ps2000aSigGenArbitraryMinMaxValues
	ps2000aSigGenFrequencyToPhase
	ps2000aSigGenSoftwareControl
	ps2000aStop
	ps2000aStreamingReady
	Wrapper functions

	Further information
	Programming examples
	Driver status codes
	Enumerated types and constants
	Numeric data types

	Glossary

