尤溪一中 2018-2019 学年上学期高三理科数学周测(十二) 答案解析

ABAAB, CCBBD 11.
$$-\frac{1}{2}$$
 12. $2\sqrt{2}$ 13. $\frac{100\pi}{3}$ 14. $\frac{\sqrt{3}}{3}$

得
$$S_{\triangle BCD} = \frac{1}{2}BC \cdot BD \cdot \sin B = \frac{3\sqrt{3}}{2}$$

得
$$S_{\triangle BCD} = \frac{1}{2}BC \cdot BD \cdot \sin B = \frac{3\sqrt{3}}{2}$$
 又由已知得,E为AC中点,∴AC = 2AE,
又BC = $2\sqrt{3}$, $\sin B = \frac{\sqrt{3}}{2}$ 得 $BD = \sqrt{3}$ 所以AE· $\sin A = \frac{3}{2}$,

在
$$\triangle$$
 BCD中,由余弦定理
$$\frac{2}{4E} = \tan A = \frac{\sin A}{\cos A},$$

$$\frac{2DE}{AE} = \tan A = \frac{\sin A}{\cos A},$$
 所以 $AE \cdot \sin A = DE \cdot \cos A = \frac{3\sqrt{2}}{2}\cos A,$
$$\sqrt{(2\sqrt{3})^2 + (\sqrt{3})^2 - 2 \cdot 2\sqrt{3} \cdot \sqrt{3} \cdot \frac{1}{2}} = 3$$
 是 $\cos A = \sqrt{2}$ 66以 $A = \frac{\pi}{2}$ 即为65录

所以CD的长为3.

(II) 在△ABC中,由正弦定理得
$$\frac{2\sqrt{3}}{\sin A} = \frac{AC}{\frac{\sqrt{3}}{2}}$$
,

所以AE•
$$\sin A = \frac{3}{2}$$
,

$$\nabla \frac{DE}{AE} = \tan A = \frac{\sin A}{\cos A}$$

得
$$\cos A = \frac{\sqrt{2}}{2}$$
, 所以 $A = \frac{\pi}{4}$ 即为所求.

16. (I)取*AD*的中点*O*,连接*MO*,*NO*,

 $:: M \to PD$ 的中点,:: OM //PA,又 $:: OM \not\subset \mathbb{I} PAB$, $:: OM // \mathbb{I} PAB$,

∵ ON // AB, 同理, ON // 面 PAB,

 $\mathbb{Z}OM \cap ON = O$, $OM \subset \overline{\mathbb{M}}MNO$, $ON \subset \overline{\mathbb{M}}MNO$,

∴面 MNO//面 PAB,

∴ $MN \subset$ ≡ OMN, ∴ MN // ≡ PAB.

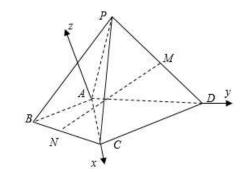
(II) (法一)
$$:: AC \perp \text{面 } PAD$$
, $:: AC \perp AD$,

以 A 为坐标原点,以 \overrightarrow{AC} , \overrightarrow{AD} 分别为 x, y 轴的

正方向,过A垂直于平面ACD的直线为z轴,

如图建立空间直角坐标系,

在 $Rt\Delta ACD$ 中, AC=2, $CD=2\sqrt{2}$, $\therefore AD=2$,



$$\therefore P(0,1,\sqrt{3}), D(0,2,0), M\left(0,\frac{3}{2},\frac{\sqrt{3}}{2}\right), B(1,-1,0), C(2,0,0), N\left(\frac{3}{2},-\frac{1}{2},0\right),$$

$$\therefore \overrightarrow{MN} = \left(\frac{3}{2}, -2, -\frac{\sqrt{3}}{2}\right),$$

设面 PBC 的法向量为
$$\vec{n} = (x, y, z)$$
, $\therefore \begin{cases} \vec{n} \cdot \overrightarrow{PB} = 0 \\ \vec{n} \cdot \overrightarrow{BC} = 0 \end{cases}$ $\therefore \begin{cases} x - 2y - \sqrt{3}z = 0 \\ x + y = 0 \end{cases}$

取
$$x = 1$$
, $\therefore y = -1, z = \sqrt{3}$, 即 $\vec{n} = (1, -1, \sqrt{3})$,

设直线 MN 与面 PBC 所成角为 θ ,

$$\therefore \sin \theta = \left| \cos \left\langle \overrightarrow{MN}, \overrightarrow{n} \right\rangle \right| = \frac{\left| \overrightarrow{MN} \cdot \overrightarrow{n} \right|}{\left| \overrightarrow{MN} \right| \cdot \left| \overrightarrow{n} \right|} = \frac{2\sqrt{2}}{\sqrt{14} \cdot \sqrt{5}} = \frac{2\sqrt{35}}{35}.$$

∴直线 MN 与平面 PBC 所成角的正弦值为 $\frac{2\sqrt{35}}{35}$.

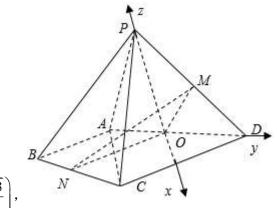
(法二) 连接OP,OE, $\therefore OP \perp OD$, E 为 CD的中点, O 为 AD的中点,

 \therefore OE // AC \therefore AC \perp 面 PAD , \therefore OE \perp 面 PAD , \therefore OE, OP, OD 两两互相垂直,

 \therefore 以O为坐标原点,以 \overrightarrow{OE} , \overrightarrow{OD} , \overrightarrow{OP} 分别为x,y,z轴的正方向,如图建立空间直角坐标系,

$$:AB//CD, AB \perp BC, CD = 2AB = 2BC = 2\sqrt{2}$$
可得 $AE = ED = \sqrt{2}$, $:AD = 2$,

$$\therefore P(0,0,\sqrt{3}), D(0,1,0), M\left(0,\frac{1}{2},\frac{\sqrt{3}}{2}\right), B(1,-2,0), C(2,-1,0), N\left(\frac{3}{2},-\frac{3}{2},0\right)$$



$$\therefore \overrightarrow{MN} = \left(\frac{3}{2}, -2, -\frac{\sqrt{3}}{2}\right),$$

设面 PBC 的法向量为 $\vec{n} = (x, y, z)$, $\therefore \begin{cases} \vec{n} \cdot \overrightarrow{PB} = 0 \\ \vec{n} \cdot \overrightarrow{BC} = 0 \end{cases}$ $\therefore \begin{cases} x - 2y - \sqrt{3}z = 0 \\ x + y = 0 \end{cases}$,

设直线 MN 与面 PBC 所成角为 θ ,

$$\therefore \sin \theta = \left| \cos \left\langle \overrightarrow{MN}, \overrightarrow{n} \right\rangle \right| = \frac{\left| \overrightarrow{MN} \cdot \overrightarrow{n} \right|}{\left| \overrightarrow{MN} \right| \cdot \left| \overrightarrow{n} \right|} = \frac{2\sqrt{2}}{\sqrt{14} \cdot \sqrt{5}} = \frac{2\sqrt{35}}{35}.$$

∴直线 MN 与平面 PBC 所成角的正弦值为 $\frac{2\sqrt{35}}{35}$.