尤溪一中 2018-2019 学年上学期高二理科数学周测(八)答案解析

第1题答案 A

第1题解析

设双曲线方程为
$$\dfrac{x^2}{2}-y^2=m$$
 , 代入点 $(2,-2)$ 坐标得 $:\dfrac{4}{2}-4=m=-2$, 故双曲线的方程为 $:\dfrac{y^2}{2}-\dfrac{x^2}{4}=1$.

第2题答案 C

第2题解析

$$P: -1 \le x \le 4$$
, $q: 3-m \le x \le 3+m(m>0)$ $3+m \le x \le 3-m(m<0)$,

依题意,
$$\begin{cases} m>0 & m<0 \\ 3-m\leq -1 \text{ , id} \\ 3+m\geq 4 & 3-m\geq 4 \end{cases}$$

第3题答案 C

第3题解析

直线恒过定点(0,1),只要该点在椭圆内部或椭圆上即可,故只要b>1且 $b\neq 2$.

第4题答案 B

第4题解析

由题设过原点的直线方程为
$$y=kx$$
与双曲方程 $\dfrac{y^2}{3}-\dfrac{x^2}{9}=1$ 联立得: $(3k^2-1)x^2-9=0$,

因为直线与双曲有
$$2$$
个交点,所以 $\Delta>0$,得: $36(3k^2-1)>0,3k^2-1>0$,解得为: $k>\frac{\sqrt{3}}{3}$ 或 $k<-\frac{\sqrt{3}}{3}$.

第5题答案 A

第5题解析

设弦的两端点为
$$A(x_1,y_1),B(x_2,y_2)$$
 , 代入椭圆得
$$\left\{ \begin{array}{l} \frac{x_1^2}{4}+\frac{y_1^2}{3}=1\\ \frac{x_2^2}{4}+\frac{y_2^2}{3}=1 \end{array} \right.$$
 , 两式相减得

$$\frac{(x_1-x_2)(x_1+x_2)}{4}+\frac{(y_1+y_2)(y_1-y_2)}{3}=0\text{ , }\underline{\mathtt{整理}}\\ \frac{y_1-y_2}{x_1-x_2}=\frac{3}{4}\text{ , } \therefore$$
 弦所在的直线的斜率为 $\frac{3}{4}$, 其方程为 $y-1=\frac{3}{4}(x+1)$, $\underline{\mathtt{S}}$ 要理得 $3x-4y+7=0$.

第6题答案 B

第6题解析

$$8kx^2-ky^2=8\Rightarrow rac{x^2}{rac{1}{k}}-rac{y^2}{rac{8}{k}}=1$$
 ,焦点在 y 轴上, $k<0$, $c^2=rac{1}{|k|}+rac{8}{|k|}=rac{9}{|k|}=9\Rightarrow |k|=1$,又

k < 0,故k = -1

第7题答案 C

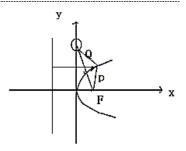
第7题解析

由题意知,短轴顶点离圆上的点距离最近,所以
$$c < b \Rightarrow c^2 < b^2 = a^2 - c^2 \Rightarrow e^2 < \frac{1}{2} \Rightarrow 0 < e < \frac{\sqrt{2}}{2}$$

第8题答案 D

第8颗解析

如图,由已知条件可知道:点P到抛物线的准线距离等于点P到抛物线的焦点F的距离,所以点P到点Q的距离与点P到抛物线的准线距离之和的最小值就是点P到点Q的距离与点P到抛物线的焦点距离之和的最小值,即当且仅当圆心D (0,4)与P,F三点共线时,距离之和最小值为 $DF-r=\sqrt{1+16}-1=\sqrt{17}-1$,所以选 D.



第9题答案

 ± 4

第9题解析

依题意,可设抛物线方程为 $x^2=-2py(p>0)$,则 $\frac{p}{2}+2=4\Rightarrow p=4$, $x^2=-8y$,将点M(m,-2)代入

抛物线方程得, $m^2=16$,解得 $m=\pm 4$

第10题答案

2

第10题解析

由已知点P在2a=6 , c=5的双曲线 $\frac{x^2}{9}-\frac{y^2}{16}=1$ 的右支上,若直线为B型直线,则直线与双曲线必相交,易知①②为

B型直线

第11题答案

$$\text{(I)}\,m<\frac{1}{4}\underline{\mathbb{H}}\,m\neq0\ ;$$

$$\text{(II)}\, m\in (0,\frac{1}{4})$$

第 11 题解析

答案:

(I)
$$\Rightarrow \begin{cases} y = x - 1 \\ y = mx^2 \end{cases} \neq mx^2 - x + 1 = 0$$

∵ 4 为真命题

方程 $mx^2 - x + 1 = 0$ 有两个不相等的实数根

$$\Delta = (-1)^2 - 4m > 0 \underline{\square} m \neq 0$$

得
$$m < \frac{1}{4}$$
且 $m \neq 0$,

即
$$q$$
 为真命题时 $m < \frac{1}{4}$ 且 $m \neq 0$

(II) · " $p \wedge q$ " 为真命题, $p \wedge q$ 都是真命题

∴方程
$$\frac{x^2}{m} + y^2 = 1$$
 表示焦点在 y 轴上的椭圆

0 < m < 1

所以此时 $0 < m < \frac{1}{4}$ 即" $p \land q$ " 为真命题 时 $m \in (0, \frac{1}{4})$

第12题答案

(1) 椭圆方程为 :
$$\frac{x^2}{10} + \frac{y^2}{6} = 1$$
 ;

(2) 直线l的斜率为: $k=\pm 1$.

第 12 题解析

(1)由已知,可设椭-圆方程为
$$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1(a>b>0)$$
 , 则 $a=\sqrt{10}$, $c=2$.所以

$$b^2=a^2-c^2=10-4=6$$
 ,所以椭圆方程为: $rac{x^2}{10}+rac{y^2}{6}=1$.

(2)若直线 $l\perp x$ 轴,则平行四边形AOBC中,点C与点O关于直线l对称,此时点C坐标为C(4,0)因为 $4>\sqrt{10}$,所以点C在椭圆外,所以直线l与x轴不垂直,故可设直线l的方程为y=k(x-2),设点 $A(x_1,y_1)$, $B(x_2,y_2)$,则联立 $L(x_1-k(x_1-2))$

$$\left\{ \begin{array}{c} y=k(x-2) \\ & \text{整理得 , } (3+5k^2)x^2-20k^2x+20k^2-30=0 \text{ , 则由题知} : x_1+x_2=\frac{20k^2}{3+5k^2}, \\ \frac{x^2}{10}+\frac{y^2}{6}=1 \end{array} \right.$$

$$y_1+y_2=-rac{12k}{3+5k^2}$$
 . 因为四边形 $AOBC$ 为平行四边形 ,所以 $\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}$,所以点 C 的坐标为

$$(rac{20k^2}{3+5k^2}, -rac{12k}{3+5k^2})$$
 , 代入椭圆方程得: $rac{\left(rac{20k^2}{3+5k^2}
ight)^2}{10}+rac{\left(-rac{12k}{3+5k^2}
ight)^2}{6}=1$, 解得 $k^2=1$, 所以 $k=\pm 1$.

第13题答案

(1) 见解答

$$(2)\frac{\sqrt{21}}{7}$$

(3) 存在点 E, 且 E 为线段 BC1的中点

第 13 题解析

(1)证明 ∵AA₁ = A₁C = AC = 2,且 O 为 AC 的中点,

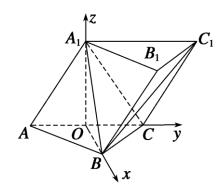
∴ $A_1O\bot AC$.

又侧面 AA₁C₁C⊥底面 ABC, 交线为 AC, A₁O⊂平面 AA₁C₁C,

∴A₁O⊥平面 ABC.

(2)解 连接 OB, 如图, 以 O 为原点,

分别以 OB、OC、OA1 所在直线为 x、y、z 轴 , 建立空间直角坐标系 , 则由题意可知 B(1,0,0) , C(0,1,0) , $A_1(0,0,\sqrt{3})$, A(0 , - 1,0) .



$$dota$$
 $\overrightarrow{A_1C}=(0,1,-\sqrt{3})$, 设平面 A $_1$ AB 的法向量为 $\overrightarrow{n}=(x,y,z)$, 则 $\overrightarrow{n}\cdot\overrightarrow{AA_1}=\overrightarrow{n}\cdot\overrightarrow{AB}=0$, 而

$$\overrightarrow{AA_1}=(0,1,\sqrt{3})$$
 , $\overrightarrow{AB}=(1,1,0)$, 可求得一个法向量 $\overrightarrow{n}=(3,-3,\sqrt{3})$,

$$\sin \theta = \left| \cos \left\langle \overrightarrow{A_1C}, \overrightarrow{n} \right\rangle \right| = \left| \frac{\overrightarrow{A_1C} \cdot \overrightarrow{n}}{\left| \overrightarrow{A_1C} \right| \cdot |\overrightarrow{n}|} \right| = \frac{6}{\sqrt{21} \times 2} = \frac{\sqrt{21}}{7},$$

连接 B_1C 交 BC_1 于点 M , 连接 AB_1 、OM ,

则 M 为 B₁C 的中点,

从而 OM 是 CAB1的一条中位线, OM IAB1,

又 AB₁⊂平面 A₁AB, OM⊄ 平面 A₁AB,

∴OM∥平面 A₁AB ,

故 BC1的中点 M 即为所求的 E 点.

