

## 尤溪一中 2018-2019 学年上学期 高三文科数学周测(五)

时间:60 分钟 满分:100 分 命卷人:池晓燕 审核人:林福济

## 一、选择题(每小题 5 分, 共 8 小题 40 分)

- 1、记 S<sub>n</sub> 为等差数列{a<sub>n</sub>}的前 n 项和.若 a<sub>4</sub>+a<sub>5</sub>=24,S<sub>6</sub>=48,则{a<sub>n</sub>}的公差为( ) B.2 A.1 C.4
- 2、已知  $\sin(\frac{\pi}{4} + x) = \frac{3}{5}$ ,则  $\sin(2x)$  的值为( )
- A.  $\frac{7}{25}$  B.  $-\frac{7}{25}$  C.  $-\frac{24}{25}$  D.  $\frac{24}{25}$
- 3、设向量 a=1 的夹角为  $\theta_{1}$  的夹角为  $\theta_{2}$   $\theta_{3}$   $\theta_{4}$   $\theta_{5}$   $\theta_{6}$   $\theta_{7}$   $\theta_{7}$   $\theta_{7}$   $\theta_{8}$   $\theta_{8}$

 $cos\theta = ($  )

- A.  $-\frac{3}{5}$  B.  $\frac{3}{5}$  C.  $\frac{\sqrt{5}}{5}$  D.  $-\frac{2\sqrt{5}}{5}$
- 4、在平面直角坐标系 xOy 中,已知四边形 ABCD 是平行四边形, AB=(3,1), AD=(2, - 2),则 AC • BD( )
- A.2
- B. 2
- C. 10
- D.10
- 5、等比数列{a<sub>n</sub>}中,a<sub>4</sub>=2,a<sub>5</sub>=5,则数列{lga<sub>n</sub>}的前 8 项和等于( )
- A.6
- B.5
- C.4
- D.3

- 6、设 D 为  $\triangle$  ABC 所在平面内一点, $\overrightarrow{AD} = -\frac{1}{3}\overrightarrow{AB} + \frac{4}{3}\overrightarrow{AC} \overrightarrow{AC} \overrightarrow{BC} = \lambda \overrightarrow{DC}(\lambda \in \mathbb{R})$ ,则 λ=( )
- A.2
- B.3
- C. 2
- D. 3
- 7、《九章算术》"竹九节"问题:现有一根九节的竹子,自上而下各节的容积成 等差数列,上面 3 节的容积共 9 升,下面 3 节的容积共 45 升,则第五节的容积为 ( )
- A.7 升
- B.8 升
- C.9 升
- D.11 升
- 8、数列{a<sub>n</sub>}满足 a<sub>n+1</sub>+(-1)<sup>n</sup>a<sub>n</sub>=2n-1,则{a<sub>n</sub>}的前 60 项和为() C.1845 A.3690 B.3660 D.1830

## 二、填空题(每小题 5 分, 共 3 小题 15 分)

- 9、已知向量 () A=(1, 3), () B=(2, 1), () C=(m+1,m 2), 若点 A、B、C 能构 成三角形,则实数 m 应满足的条件是
- 10、已知向量 a h满足: |a|=1, |b|=1,  $|a+b|=\sqrt{3}$ 则 a= a+2 b夹角的余弦值 为 \_\_\_\_\_.
- 11、设等比数列{an}的公比为 q,前 n 项和为 Sn,若 Sn+1,Sn,Sn+2 成等差数列,则 q 的值为\_\_\_\_\_\_.

## 三、解答题(每小题 15 分, 共 3 小题 45 分)

- 12、设等差数列 $\{a_n\}$ 的前 n 项和  $S_n$ 满足  $S_5=15$ ,且  $2a_2,a_6,a_8+1$  成公比大于 1 的等比数列.
- (1)求数列{an}的通项公式;
- (2)设 b<sub>n</sub>=2<sup>n</sup> a<sub>n′</sub>求数列{b<sub>n</sub>}的前 n 项和 T<sub>n</sub>.
- 13、正项数列{a<sub>n</sub>}满足:a<sub>n</sub><sup>2</sup> (2n 1)a<sub>n</sub> 2n=0.
- (1)求数列{an}的通项公式 an;
- (2)令  $b_n = \frac{1}{(n+1)an}$ ,求数列 $\{b_n\}$ 的前 n 项和  $T_n$ .并求使  $T_n > \frac{5}{11}$ 成立的最小正整数 n 的值.
- 14、已知 $^{\triangle}$ ABC 的三个内角 A,B,C 成等差数列,角 B 所对的边 b= $\sqrt{3}$ ,且函数  $f(x)=2\sqrt{3}\sin^2x+2\sin x\cos x$   $-\sqrt{3}$ 在 x=A 处取得最大值.
- (1)求函数 f(x)的值域及周期;
- (2)求△ABC 的面积.