

# A novel miniaturized loop heat pipe

# Yong Tang, Jianhua Xiang, Zhenping Wan<sup>\*</sup>, Wei Zhou, Lei Wu

School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, People 'Republic of China

# article info

Article history: Received 13 July 2009 Accepted 25 January 2010 Available online 1 February 2010

Keywords: Miniaturized loop heat pipe Evaporator Intensi?ed boiling structure Condensation structure Sintered felt wick

## abstract

The research on a novel miniaturized loop heat pipe (LHP) consisted of an evaporator, a condenser, vapor and liquid lines is presented in this paper. In the LHP, the evaporator was separated into two parts of boiling and suction chambers by a vapor separator, which drove vapor to one-way ?ow to vapor line. Moreover, the bottom of evaporator was connected as the cycle channel of refrigerant. Thin copper plates with fabricated by the ploughing – extrusion (P – E) method were embedded as enhanced structures micro-?ns in the boiling chamber. Accordingly, the copper ?ber sintered felt fabricated by the solid-phase sintering of copper ?bers with rough surface, was ?lled in the suction chamber of evaporator as the wick to provide force. In addition, the integral rhombic-shaped pillars fabricated by the milling, behaved as the capillary condensation structures in the condenser. The startup and operation of LHP intensi?ed characteristics were tested under different heat loads and refrigerants. The experimental results showed that the highest reached 93.2 ℃ under the maximum heat load of 150 W. temperature of evaporator

Crown Copyright ó 2010 Published by Elsevier Ltd. All rights reserved.

#### 1. Introduction

Loop heat pipe (LHP), a kind of phase-change heat transfer device, exhibits high heat transfer power, simple structure, light weight, and good adaptability. Comparing with the heat pipe, the LHP can improve more than two orders of magnitude in the ability of heat transfer and solve the problem of ?exible. Therefore, it has means to solve the heat managebeen expected as a promising thermal control ment problem of the electronics systems [1,2]. In a LHP, the wicks in the evaporator are usually required to provide the capillary force to drive the cycle of refrigerant and block the vapor to reverse ?ow into the liquid line at the same time. However, the common wick usually fails to prevent the vapor reverse diffusion into liquid line. In addition, pressure ?uctuation happens in the LHP. Thus these features result in a decrease in the performance of LHP. In recent years, interesting works were focused on developing the thermal control of LHP for high integrated electronics [3 - 5]. Jie et al. [6] developed a mechanically pumped MLHP with two evaporators about 3 mm in outer diameter. Riehl and Dutra [7] took the acetone as the refrigerant. The experimental results showed that LHP could sustain a temperature of 80 °C when heat load was 70 W. Riehl and Santos [8] put a wick with circumferential grooves into an evaporator, the maximum operational heat load reached 80 W. The evaporator presented heat transfer coef?-

cients 60% greater than those veri?ed for the previous capillary evaporator design. Tsai et al. [9] proposed a miniature ?at plate LHP with comb grooves evaporator. The test results showed that the ?at plate LHP could dissipate heat 50 W and the die temperature was below 90 ℃. The glass pipe and stainless steel pipes were used as evaporator section in the LHP [10]. The experimental results showed that the heat transfer was enhanced greatly due to Singh et al. [11] designed the combined effect of the evaporation. a LHP with the ?at disk shape evaporator with 10 mm in thickness and 30 mm in diameter, which was made of copper plate, and nickel was used as wick. The device was able to transfer the maximum heat load of 70 W with evaporator temperature below 100 ±5 ℃. The thermal resistance of LHP was between 0.17 and 5.66 ℃/W Joung et al. [12] designed and adopted a planar bifacial wick structure for the LHP with ?at bifacial thermo-contact surfaces with active area of 25 cm<sup>2</sup>. The LHP showed a minimum thermal resistance of 1.27 ℃/W at the maximum heat load of 78 W, while the temperature of the evaporator reached 124.1 °C. In this study, we developed a novel LHP with an evaporator, a condenser, vapor and liquid lines. In the evaporator, a vapor separator was designed to separate the evaporator into two parts of boiling and suction chambers. The vapor separator could drive vapor to one-way ?ow to vapor line. The copper ?ber sintered felt was used as wick. Accordingly, the thin copper plates with orthogonal micro-?ns as the enhanced boil structure and integral rhomwere embedded into the bic pillars as condensation structures and the condenser. In addition, the effect of power inevaporator puts and refrigerants on the dynamic performances of LHP was investigated in detail.

\* Corresponding author. Tel./fax: +86 20 87114634.

E-mail address: zhpwan@scut.edu.cn (Z. Wan).

1359-4311/\$ - see front matter Crown Copyright ó 2010 Published by Elsevier Ltd. All rights reserved. doi: 10.1016/j.applthermaleng.2010.01.030

### 2. Fabrication of miniature LHP

The miniature LHP was constructed with four parts: an evaporator, a condenser, vapor line and liquid line. Fig. 1 shows the structure diagram of LHP system. When the evaporator was heated, the refrigerant began to vaporize and ?ow toward the condenser along the vapor line. Later, the refrigerant would experience a phase change to liquid. Finally, the condensed liquid returned to through the liquid line. The evaporator was designed evaporator (L? W? H = 55 mm ? 50 mm ? into the rectangular shape 18 mm). The dimension of condenser was 76 mm in length, 80 mm in width, and 95 mm in height. The material of the evaporator and the condenser was red copper and aluminum, respectively. Two PU tubes (£ 10 mm ? 8 mm, £8mm ? 6 mm) about 350 mm in length were served as vapor liquid and lines, respectively.

#### 2.1. Fabrication of evaporator and its components

The miniaturized LHP performed insuf?cient power dissipation capacity as a result of the reduction size. Accordingly, the phase



change became dif?cult to keep boiling for the thin wick of the miniaturized LHP in the evaporation process [13] . In this study. was separated into two parts of boiling and suction the evaporator by a vapor separator (shown in Fig. 2). The bottom of chambers evaporator was connected to ensure the cycle of refrigerant, and meanwhile. the one-way ?ow of vapor was achieved due to the barrier function of the vapor separator. These structures were dif-LHP which usually used the wick to obferent from the traditional the back?ow of the refrigerant struct [14,15] .

#### 2.1.1. Forming process of micro-?n on thin copper plate

cracks, and ?ns Nimkar et al. [16] validated that micro-grooves, can speed up the vaporization of refrigerant, resulting in the signifin the boiling icant improvement performance. To improve the heat transfer performance, Tang et al. [17,18] studied on the processing methods of micro-grooves, cracks, and ?ns. In this study, ploughing – extrusion (P - E) method the orthogonal was used to The material of fabricate the thin copper plate with micro-?ns. P-Etool was W18Cr4V. The P-Etool included a ploughing edge, extrusion face  $A_r$ , a minor extrusion face  $A_r^0$ , a primary a primary face  $A_b$  and a minor forming face  $A_b^0$  (shown in Fig. 3 a). forming The  $P_0 - R$  cross-section of the tool was a wedge structure ( $a_0$  -tool clearance of P-Etool, Kr - edge inclination angle, b - major forming angle,  $b^0$  – minor forming angle,  $r_0$  – major extrusion angle,  $r_0^0$  – minor extrusion angle). The blade in the front end of wedge structure can plough the metal and drive the metal ?ow along the major face and the minor one. The micro-?n extrusion was formed by the main extrusion face, and then was trimmed by the minor face to higher.

The experiment was carried out on the planer (No. B6050B). The parameters of P-E tool was  $K_r = 80$  °,  $a_0 = 10$  °,  $r_0 = 30$  °,  $r_0^0 = 10$  °, b = 15 °,  $b^0 = 5$  °. The process procedure was described as follow: ?rstly, parallel micro-grooves was obtained on the surface of copper plate by the longitudinal P-E, then the micro-cracks and micro-hole were achieved by extruding the grooves formed in the ?rst step by the second P-E in the vertical direction, as shown in Fig. 3b.

Thin copper plate of 0.4 mm in thickness with micro-?ns and cracks is shown in Fig. 3 c. The depth and width of micro-groove was 0.25 mm and 0.40 mm, respectively. The height of micro-?n and micro-cracks was 0.10 mm. The surface with micro-grooves role on improving plaved an important the performance of evaporator. Thin copper plates were parallel-embedded in the boiling to increase the evaporation chamber area greatly.

#### 2.1.2. Fabrication of copper ?ber sintered felt

Metal ?bers sintered felt is a new type kind of porous metal materials, which is fabricated by the sintering of metal ?ber

Fig. 1. Schematic diagram of LHP system.

instead of metal powder. The metal ?ber sintered felt have the









Fig. 3. (a) P-Etool, (b) manufacturing process and (c) SEM image of micro-?n on thin copper plate  $(a_0 - tool$  clearance of P-Etool, Kr – edge inclination angle, b – major forming angle,  $b^0$  – minor forming angle,  $r_0$  – major extrusion angle,  $r_0^0$  – minor extrusion angle).

porous structure of three-dimensional network, high-precision and full-connectivity pore size, high porosity and large speci?c surface area [19 - 21]. So, these features of metal ?ber sintered felt provide a promising application as the wick.

In this study, the copper ?ber was fabricated by the cutting method using the multi-tooth tool on a horizontal lathe (No. C6132A). The parameters and shape of tool are shown in Fig. 4 a. The main cutting blade was composed of many tiny teeth. The distance and height of tiny teeth were 0.3 mm and 0.2 mm, respectively. C<sub>1</sub> was nominal rake angle,  $a_1$  was nominal clearance angle, in this study,  $c_1 = 30^\circ$ ,  $a_1 = 8^\circ$ .

Fig. 4 b shows the SEM image of copper ?ber fabricated by the cutting method. It is noted that the copper ?ber has a rough

(d)

Fig. 4. (a) Multi-tooth tool, (b) SEM image of copper ?bers, (c) and (d) SEM image and shape of sintered felt ( $c_1$  – nominal tool side rake,  $a_1$  – nominal tool clearance,  $S_1, S_2, I$  – tool edge, m – tooth pitch, h – tooth depth).

surface, so the speci?c surface area was increased. This feature creates the advantages for sintering copper ?ber. The copper ?ber sintered felt was obtained by the solid-phase sintering of copper ?bers. The SEM and optical images of copper ?ber sintered felt is shown in Fig. 4c and d, respectively. The copper ?ber sintered felt with 70% porosity was used as wick in the suction chamber. The porosity of metal ?ber sintered felt was calculated by the following equation:

E? 1 à 
$$\frac{M}{qV}$$
 ? 100 % e1T

M – the mass of the copper ?ber sintered felt (g), V – the volume of the copper ?ber sintered felt (cm  $^3$ ), q – the density of red copper (g/cm  $^3$ ).

## 2.2. Fabrication process of condenser

High condensation ef?ciency is crucial to the power dissipation LHP. In this study, the integral capacity for the miniaturized condensation of staggered pillar with rhombic-shaped structure section was fabricated by the milling method on a milling machine (No. X5032). The forming process of integral condensation structure is shown in Fig. 5a. The staggered integral pillar structure located in the bottom of condenser and outside integral ?ns was used as intensi?ed structure. These structures condensation are conductive to increase the condensation area and decreased the coef?cient thermal can be inresistance, so the heat transfer creased. The inside integral pillar structure and appearance of condenser is shown in Fig. 5b and c, respectively.



#### 3. Testing system of LHP

system was built to evaluate the performance The testing of LHP, including three parts: heater, cooler and temperature data collection (shown in Fig. 6). The heater part was consisted of a heater and a voltage regulator. To prevent the heat loss, ?rstly, the solid copper plate with 50 mm ? 50 mm ? 15 mm in dimension with four resistors of 400 X used as heat source was embedded fastened on the evaporator by mechanically, then the solid copper plate was wrapped with asbestos tightly, later was placed into a wooden box. The heat loss was produced from vapor line and liquid line mainly (Line material: PU) can be ignored, because the amount of heat loss was very small. The heat generated from resistors could be controlled by a voltage regulator. So the heat source was calculated by the following equation:

$$Q ? \frac{U^2}{R_1}$$
 e2T

where Q was input power (W), U was voltage (V),  $R_t$  was total resistance (X).

Four resistors of 400 X was parallel connection, so  $R_t$  was calculated:

$$R_{t} ? \frac{1}{\frac{1}{R_{t}} t \frac{1}{R_{2}} t \frac{1}{R_{3}} t \frac{1}{R_{4}}} e3T$$

So, when U = 70.7 V, input power was 50 W. The relationship of voltage and power was shown in Table 1.

A fan as cooler part located in the outside of condenser to force speed of fan was 2200 r/min. air convection. The rotating The temperature data collection part were made up of temperature convertor measuring module ADAM-4018, analog/digital (A/D) ADAM-4502, K type thermocouples, and eight а computer. Temperature was transmitted signal to A/D convertor from temperature measuring module which was connected with the and then to computer whose signal sampling thermocouples, frequency was 1 datum s<sup>a 1</sup>. The eight thermocouples were distributed on the evaporator  $(T_{1-1}, T_{1-2}, T_{1-3}, T_{1-4}, T_1 = (T_{1-1} + T_{1-2} + T_{1-3} + T_{1-3})$  $(T_{1-4})/4$ ) the condenser  $(T_{2-1}, T_{2-2}, T_2 = (T_{2-1} + T_{2-2})/2)$ , liquid outlet  $(T_3)$ , and liquid inlet  $(T_4)$  (shown in Fig. 1).

## 4. Results and discussion

The temperature and thermal resistance of LHP were tested under the different heat loads and refrigerants. The refrigerants had a



(C)

Fig. 5. (a) Scheme diagram of integral condensation structure process, (b) integral pillar structure and (c) shape of condenser.



Fig. 6. Performance test system of LHP.

| Table 1      |            |           |        |
|--------------|------------|-----------|--------|
| Relationship | of voltage | and input | power. |

| Voltage (V) | Input power (W) |
|-------------|-----------------|
| 70.7        | 50              |
| 86.6        | 75              |
| 100         | 100             |
| 122.5       | 150             |
|             |                 |

of LHP. Excessive of in?uence signi?cant on the performance can cause the increase in the temperature refrigerant of evaporator or even the disability of LHP, and vice versa. Generally, the optimal inventory of the refrigerant was at 40-50% of inner volume of LHP [22] . Therefore, the amount of refrigerant was determinate as to the inner volume of LHP. In order to decrease 20 ml according the starting the pressure of LHP system was detemperature, creased to 200 Pa by a vacuum pump.

## 4.1. The effect of power input on the dynamic characteristics

Ethanol with 99.5% in concentration was used as refrigerant. The copper ?ber sintered felt with 70% porosity was used as wick in the suction chamber. Fig. 7a - dshows the startup and running characteristics of LHP under the power input of 50 W, 75 W, 100 W and 150 W, respectively.

and running of LHP were divided The startup characteristics into four stages according to Fig. 7. The ?rst stage was named In this stage, majority the rising temperature stage of evaporator. heat was absorbed by the shell of evaporator, no enough heat made the refrigerant boil. In the second stage, a small portion of refrigerant started to vaporize, and then condensed quickly by the vapor tube. The ?rst and second stages experienced a short time. The third stage was named the stage of intense boiling. A large number of vapor entered into the condenser through the vapor line, while the temperature of system was rising. It was a long time duration the experimental in this stage. Moreover, result showed that the LHP could not work without a vapor separator in the evaporator, because the liquid could not reach the thin copper plate to vaporize under the pressure of the vapor to wick. The last stage, the temperature of LHP system kept stable situation. In the LHP system, the reduced from the evaporator temperature was gradually to condenser along the vapor line. Because the temperature of liquid inlet  $(T_4)$  was affected by heat conduct from capillary and evaporator wall,  $T_4$  and  $T_3$  were approximately equal. So  $T_1 - T_4$  meets the following relationship:

# $T_1 > T_2 > T_3$ and $T_1 > T_2 > T_4$ e4T

Fig. 7a shows that the temperature of the evaporator is increased quickly and the temperature of the condenser is kept at 25 ℃. When the temperature 29.9 °C, of evaporator approached the LHP started to startup. The temperature of evaporator raised and then kept at 47.1 °C at last. The temperature slowly up of the condenser raised up at initial startup, then slightly increased and was constant 42 ℃?nally. When the LHP began to work, boiling and bubbles happened in the evaporator because vapor ?owed to vapor line. When the evaporator the heat load was infrom creased to 75 W or 100 W, the boiling time was shorten (as shown in Fig. 7 b and c). When the heat load was 150 W, the startup and operating characteristics of LHP were showed in Fig. 7 d. The evaporator temperature was increased continuously and later was kept at 93.7 °C, which was the highest allowtemperature approached able operation temperature for electronic components. These results indicate that LHP is capable of dissipating 150 W of thermal energy and keeping the evaporator under 100 ℃. temperature



1156



Fig. 7. Transient state response of LHP under different heat loads with alcohol as refrigerant.

4.2. The effect of refrigerant on the dynamic characteristics

Fig. 8a – dshows the startup and run characteristics of LHP with pure water as refrigerant at the power input of 50 W, 75 W, 100 W and 150 W, respectively. Since the speci?c heat capacity and boiling point of water in vacuum are higher than that of alcohol, more amount of heat is required to be absorbed by water to boiling under the same condition. The same phenomenon that LHP could not work without a vapor separator in the evaporator appeared when alcohol was used as refrigerant, because there is not the cycle of refrigerant. Comparing Fig. 7 to Fig. 8, it is found that the startup time of water as refrigerant is three times longer than alcohol. However, it takes the same time length for the system to reach the steady state.

The rising temperature of the evaporator and condenser with water as refrigerant was higher than that with alcohol in low heat load situation (0 - 75 W), but the reverse result was obtained in the case of high heat load situation (75 - 150 W). Interestingly, the total time of three stages was equal with alcohol or water as refrigerant for the LHP.

#### 4.3. Thermal resistance of LHP

The highest temperature of evaporator with water as refrigerant was higher than that of alcohol in the low heat load condition, because the speci?c heat capacity of water is higher than alcohol. However, the reverse was the case when the input power increased to 150 W. Thermal resistance is calculated as following equation:

R? 
$$\frac{Tevp \ a Tcon}{Q_{in}}$$
 e51

 $T_{evp}$  – temperature of evaporator (°C),  $T_{con}$  – temperature of condenser (°C),  $Q_{in}$  – heat load (W).



When water and alcohol were used as refrigerants respectively, resistance of LHP system was decreased with increasthe thermal ing heat load (shown in Table 2). Furthermore, the thermal resisdifferent tance of system varied under refrigerants and heat loads. When the heat load was increased to 73 W, thermal resistance was equal under the different refrigerants. The low thermal could be achieved in case of alcohol as refrigerant resistance under the low input power. Also, the water as refrigerant behave better for the heat transfer of large heat density.

#### 5. Conclusions

- (1) A novel LHP with a vapor separator in the evaporator was and fabricated in this study. The vapor separator designed ?ow of refrigerant insured the one-way in order to achieve performance of LHP. It gives a new a stable heat transfer way to resolve the contradiction power dissipation between for the LHP. and miniaturization capacity
- (2) The thin copper plate with micro-grooves, cracks, and ?ns on which was used as the strengthened the surface, boiling by the P-E method. The copper structure, was fabricated ?ber sintered felt as wick, fabricated by the solid-phase sintering of copper ?bers with rough surface, provided the capillary force for the LHP. The staggered integral pillar with rhombic-shaped section processed by the milling method was used as the intensi?ed condensation structure.
- The LHP exhibited a good startup (3) performance and adaptive capacity of extended input power under the different work-When the alcohol was used as refrigerant, ing conditions. the LHP demonstrated better heat transfer performance under low input power. However, the water was optimal the





(b)



Fig. 8. Transient state response of LHP under different heat loads with water as refrigerant.

| Table 2 |            |                |  |
|---------|------------|----------------|--|
| Thermal | resistance | of LHP system. |  |

| Heat load (W) | Thermal resistance            |                                |  |
|---------------|-------------------------------|--------------------------------|--|
|               | Alcohol as refrigerant ( °C/W | /) Water as refrigerant ( C/W) |  |
| 50            | 0.1200                        | 0.1480                         |  |
| 75            | 0.0990                        | 0.0960                         |  |
| 100           | 0.0700                        | 0.0680                         |  |
| 150           | 0.0455                        | 0.0315                         |  |

refrigerant for the LHP under the high power input condition. A minimum thermal resistance was 0.0315 K/W under the maximum heat load of 150 W with water as refrigerant in the LHP. In addition, the temperature of evaporator reached 93.7 °C when alcohol was used as refrigerant under the maximum heat load.

# Acknowledgements

This research were supported by the National Nature Science Foundation of China (Nos. 50436010, 50605023, 50675070 and U0834002), and the Natural Science Foundation of Guangdong Province (No. 07118064).

#### References

- Yury F. Maydanik, Loop heat pipes, Applied Thermal Engineering 25 (5 6) (2005) 635 – 657.
- [2] Yury F. Maydanik, Sergey V. Vershinin, Mikhail A. Korukov, Jay M. Ochterbeck, Miniature loop heat pipes – a promising means for cooling electronics, IEEE Transactions on Components and Packing Technologies 28 (2) (2005) 290 – 295.
- [3] Yuming Chen, Manfred Groll, Rainer Mertz, Yu F. Maydanik, S.V. Vershinin, Steady-state and transient performance of a miniature loop heat pipe, International Journal of Thermal Sciences 45 (11) (2006) 1084 – 1090.
- [4] Vladimir G. Pastukhov, Yury F. Maydanik, Low-noise cooling system for PC on the base of loop heat pipes, Applied Thermal Engineering 27 (5 - 6)(2007) 894 - 901.
- [5] V.G. Pastukhov, Yu F. Maidanik, C.V. Vershinin, M.A. Korukov, Miniature loop heat pipes for electronics cooling, Applied Thermal Engineering 23 (9) (2003) 1125 – 1135.
- [6] Liu Jie, Pei Nian-Qiang, Guo Kai-Hua, He Zhen-Hui, Li Ting-Xuen, Experimental investigation on a mechanically pumped two-phase cooling loop with dualevaporator, International Journal of Refrigeration 31 (7) (2008) 1176 – 1182.

- [7] Roger R. Riehl, Thiago Dutra, Development of an experimental loop heat pipe for application in future space missions, Applied Thermal Engineering 25 (1) (2005) 101 – 112.
- [8] Roger R. Riehl, Nadjara dos Santos, Loop heat pipe performance enhancement using primary wick with circumferential grooves, Applied Thermal Engineering 28 (14 – 15) (2008) 1745 – 1755.
- [9] Meng-Chang Tsai, Chun-Sheng Yu, Shung-Wen Kang, Flat plate loop heat pipe with a novel evaporator structure, in: Proceedings of 21st Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 15 – 17 March, 2005, pp. 187 – 190.
- [10] Jie Yi, Zhen-Hua Liu, Jing Wang, Heat transfer characteristics of the evaporator section using small helical coiled pipes in a looped heat pipe, Applied Thermal Engineering 23 (1) (2003) 89 – 99.
- [11] Randeep Singh, Aliakbar Akbarzadeh, Masataka Mochizuki, Operational characteristics of a miniature loop heat pipe with ?at evaporator, International Journal of Thermal Sciences 47 (11) (2008) 1504 1515.
- [12] Wukchul Joung, Taeu Yu, Jinho Lee, Experimental study on the loop heat pipe with a planar bifacial wick structure, International Journal of Heat and Mass Transfer 51 (7 – 8) (2008) 1573 – 1581.
- [13] Hung-Yi Li, Kuan-Ying Chen, Thermal performance of plate-?n heat sinks under con?ned impinging jet conditions, International Journal of Heat and Mass Transfer 50 (9 – 10) (2007) 1963 – 1970.
- [14] E. Bazzo, R.R. Riehl, Operation characteristics of a small-scale capillary pumped loop, Applied Thermal Engineering 23 (6) (2003) 687 – 705.
- [15] Jianlin Yu, Hua Chen, Hua Zhao, Yanzhong Li, An experimental investigation on capillary pumped loop with the meshes wick, International Journal of Heat and Mass Transfer 50 (21 – 22) (2007) 4503 – 4507.
- [16] Nitesh D. Nimkar, Sushil H. Bhavnani, Richard C. Jaeger, Effect of nucleation site spacing on the pool boiling characteristics of a structured surface, International Journal of Heat and Mass Transfer 49 (17 – 18) (2006) 2829 – 2839.
- [17] Y. Tang, Y. Chi, Z.-P. Wan, X.-K. Liu, J.-Ch. Chen, X.-X. Deng, L. Liu, A novel ?nned micro-groove array structure and forming process, Journal of Materials Processing Technology 203 (1 – 3)(2008) 548 – 553.
- [18] Jian-hua Xiang, Yong Tang, Bang-yan Ye, Wei Zhou, Hui Yan, H.U. Zhi-hua, Compound forming technology of outside 3D integral ?n of copper tubes, Transactions of Nonferrous Metals Society of China 19 (2) (2009) 335 – 340.
- [19] Richard R. Williams, Daniel K. Harris, The heat transfer limit of step-graded metal felt heat pipe wicks, International Journal of Heat and Mass Transfer 48 (2) (2005) 293 – 305.
- [20] Yong Tang, Wei Zhou, Minqiang Pan, Hongqing Chen, Wangyu Liu, Hao Yu, Porous copper ?ber sintered felts: an innovative catalyst support of methanol steam reformer for hydrogen production, International Journal of Hydrogen Energy 33 (12) (2008) 2950 – 2956.
- [21] Z.P. Wan, Y. Tang, Y.J. Liu, W.Y. Liu, High ef?cient production of slim long metal ?bers using bifurcating chip cutting, Journal of Materials Processing Technology 189 (1 – 3)(2007) 273 – 278.
- [22] Pin-Chih Chen, Wei-Keng Lin, The application of capillary pumped loop for cooling of electronic components, Applied Thermal Engineering 21 (17) (2001) 1739 – 1754.